
50 Ways with GPs

Richard Wilkinson

School of Maths and Statistics
University of Sheffield

Emulator workshop
June 2017

Recap

A Gaussian process is a random process indexed by some variable (x ∈ X
say), such that for every finite set of indices, x1, . . . , xn, then

f = (f (x1), . . . , f (xn))

has a multivariate Gaussian distribution.

Why would we want to use this very restricted model?

Recap

A Gaussian process is a random process indexed by some variable (x ∈ X
say), such that for every finite set of indices, x1, . . . , xn, then

f = (f (x1), . . . , f (xn))

has a multivariate Gaussian distribution.

Why would we want to use this very restricted model?

Answer 1
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Answer 1
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Answer 1
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Answer 1
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Answer 2: non-parametric/kernel regression
k determines the space of functions that sample paths live in.

Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22

= (X>X + σ2I)X>y

= X>(XX> + σ2I)−1y (the dual form)

So the prediction at a new location x ′ is

ŷ ′ = x ′>β̂ = x ′>X>(XX> + σ2I)−1y

= k(x ′)(K + σ2I)−1y

where k(x ′) := (x ′>x1, . . . , x
′>xn) and Kij := x>i xj

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2) etc.
Then

Kij = φ(xi)
>φ(xj) etc

Answer 2: non-parametric/kernel regression
k determines the space of functions that sample paths live in.

Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22

= (X>X + σ2I)X>y

= X>(XX> + σ2I)−1y (the dual form)

So the prediction at a new location x ′ is

ŷ ′ = x ′>β̂ = x ′>X>(XX> + σ2I)−1y

= k(x ′)(K + σ2I)−1y

where k(x ′) := (x ′>x1, . . . , x
′>xn) and Kij := x>i xj

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2) etc.
Then

Kij = φ(xi)
>φ(xj) etc

Answer 2: non-parametric/kernel regression
k determines the space of functions that sample paths live in.

Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I)X>y

= X>(XX> + σ2I)−1y (the dual form)

So the prediction at a new location x ′ is

ŷ ′ = x ′>β̂ = x ′>X>(XX> + σ2I)−1y

= k(x ′)(K + σ2I)−1y

where k(x ′) := (x ′>x1, . . . , x
′>xn) and Kij := x>i xj

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2) etc.
Then

Kij = φ(xi)
>φ(xj) etc

Answer 2: non-parametric/kernel regression
k determines the space of functions that sample paths live in.

Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I)X>y

= X>(XX> + σ2I)−1y (the dual form)

So the prediction at a new location x ′ is

ŷ ′ = x ′>β̂ = x ′>X>(XX> + σ2I)−1y

= k(x ′)(K + σ2I)−1y

where k(x ′) := (x ′>x1, . . . , x
′>xn) and Kij := x>i xj

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2) etc.
Then

Kij = φ(xi)
>φ(xj) etc

Answer 2: non-parametric/kernel regression
k determines the space of functions that sample paths live in.

Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I)X>y

= X>(XX> + σ2I)−1y (the dual form)

So the prediction at a new location x ′ is

ŷ ′ = x ′>β̂ = x ′>X>(XX> + σ2I)−1y

= k(x ′)(K + σ2I)−1y

where k(x ′) := (x ′>x1, . . . , x
′>xn) and Kij := x>i xj

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2) etc.
Then

Kij = φ(xi)
>φ(xj) etc

For some sets of features, the inner product is equivalent to
evaluating a kernel function

φ(x)>φ(x ′) ≡ k(x , x ′)

where
k : X × X → R

is a semi-positive definite function.

We can use an infinite dimensional feature vector φ(x), and because
linear regression can be done solely in terms of inner-products
(inverting a n × n matrix in the dual form) we never need evaluate
the feature vector, only the kernel.

Kernel trick: lift x into feature space by replacing inner products
x>x ′ by k(x , x ′)

Kernel regression/non-parametric regression/GP regression all closely
related:

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi)

For some sets of features, the inner product is equivalent to
evaluating a kernel function

φ(x)>φ(x ′) ≡ k(x , x ′)

where
k : X × X → R

is a semi-positive definite function.
We can use an infinite dimensional feature vector φ(x), and because
linear regression can be done solely in terms of inner-products
(inverting a n × n matrix in the dual form) we never need evaluate
the feature vector, only the kernel.

Kernel trick: lift x into feature space by replacing inner products
x>x ′ by k(x , x ′)

Kernel regression/non-parametric regression/GP regression all closely
related:

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi)

For some sets of features, the inner product is equivalent to
evaluating a kernel function

φ(x)>φ(x ′) ≡ k(x , x ′)

where
k : X × X → R

is a semi-positive definite function.
We can use an infinite dimensional feature vector φ(x), and because
linear regression can be done solely in terms of inner-products
(inverting a n × n matrix in the dual form) we never need evaluate
the feature vector, only the kernel.

Kernel trick: lift x into feature space by replacing inner products
x>x ′ by k(x , x ′)

Kernel regression/non-parametric regression/GP regression all closely
related:

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi)

Generally, we don’t think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.

Generally, we don’t think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.

Generally, we don’t think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.

Generally, we don’t think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.

Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

1

Some crazy cats think we should do statistics without probability

Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

1Some crazy cats think we should do statistics without probability

Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods1.
If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

1Some crazy cats think we should do statistics without probability

Answer 4: Uncertainty estimates from emulators

We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects (see Lindsay’s talk)

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = X , y

Var(f (x)|X , y) = k(x , x)− k(x ,X)k(X ,X)−1k(X , x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Answer 4: Uncertainty estimates from emulators

We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects (see Lindsay’s talk)

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = X , y

Var(f (x)|X , y) = k(x , x)− k(x ,X)k(X ,X)−1k(X , x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Answer 4: Uncertainty estimates from emulators

We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects (see Lindsay’s talk)

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = X , y

Var(f (x)|X , y) = k(x , x)− k(x ,X)k(X ,X)−1k(X , x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Example 1: Easier regression
PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:
eccentricity, precession, obliquity.

Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.

Example 1: Easier regression
PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:
eccentricity, precession, obliquity.

Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.

Example 1: Easier regression
PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:
eccentricity, precession, obliquity.

Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.

Example 1: Easier regression
PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:
eccentricity, precession, obliquity.

Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.

Example 2: Estimating gas laws for CCS
Cresswell, Wheatley, W., Graham 2016

PV = nRT is an idealised law that holds in the limit.

it doesn’t apply when the gas is near its critical point

gasses are most easily transported in the super-critical region.

Impurities in the CO2 (SO2 etc) change the fluid behaviour.

We only have a few measurements of fluid behaviour for impure CO2.

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035

−5
0

5
10

v.star

va
lu
es

Figure 2: Pressure against Volume Plot of GP for Pure CO2 at 290K

anything about the EoS. This contrast with reality where certain increases for large volumes as we
know the EoS tends to the ideal gas law. Whilst the mean of the GP does become this exactly for
large volume due to our choice of mean function, the large uncertainty means that the independent
realisations behave erratically. This suggests a need for either a non-stationary covariance function
which tends to zero as volume tends to infinity or perhaps an adaptation of the methods described
in section 1 where the input space is partitioned and di↵erent models fit to each region. Here rather
than fitting a GP to the region of large volume we could fit the ideal gas law model. Finally we
note the critical point does not behave exactly like a saddlepoint. This could be due to there being
a scarcity of data points in the region around the critical point. We attempt to correct for this
by obtaining a further 26 data points at the critical temperature in the region around the critical
point. This does indeed improve the behaviour although not perfectly. For volume less than the
critical volume the pressure attains values lower than the critical pressure and for volumes greater
than the critical volume, pressure greater than the critical pressure are attained. It is possible that
the prescence of greater amounts of data below the critical temperature than above it play a part
in this and in future data for more temperatures around the critical temperature could be included.
For now we proceed with 950 data points on 9 temperatures.

2.3 Optimisation
Choosing the hyperparameters is not particularly robust. As such we estimate them by max-

imising the log-likelihood for our GP. Doing this using the numerical integration functions in R,
integrate and adaptIntegrate, however leads to issues. The numerical integration seems to lead to
errors in the construction of the covariance matrix for our training data and the inverse can thus
not be computed. As such we must constrain ourselves to covariance functions for which we can find
the integrals required in section 2.1. This is possible for the squared exponential function. A further
issue arises even when using analytic integrals. Starting the optimisation using Nelder-Mead, from
100 randomly generated initial points leads to failure 18% of the time due to the nugget tending to
0 whilst the signal variance tends to infinity. This leads to our covariance matrix becoming compu-
tationally singular and non-invertible. This is due to the NIST data being from a smooth function.
As such we fix the nugget to be 10�6 as a jitter term used for computational means, common prac-
tice when using GPs, Goldberg et al. [1998]. With a nugget of this size the optimiser finds a local
maximum on 16 occasions. Avergaing over the 84 times the optimiser found the global maximum

5

∫ vg

vl

P(v)dv = Ps(vg−vl)

and
∂P

∂v
| =

∂P2

∂v2
|= 0

at P = Pc ,T = Tc . By
incorporating this
information we were able
to make more accurate
predictions.

Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single
permutation σ, where σ2 = e, e.g.,

f (x1, x2) = f (x2, x1)

If we assume
f (x1, x2) = g(x1, x2) + g(x2, x1)

for some arbitrary function g, then f has the required symmetry.

If we model g(·) ∼ GP(0, k(·, ·)), then the covariance function for f is

kf = Cov(f (x), f (x ′)) = k(x , x ′) + k(σx , x ′) + k(x , σx ′) + k(σx , σx ′)

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in σ), then k(x , x ′) = k(σx , σx ′) and
k(x , σx ′) = k(σx , x ′) as swaps only occur in pairs (σ2 = e). So we can
use

kf (x , x ′) = k(x , x ′) + k(σx , x ′)

saving half the computation.

Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single
permutation σ, where σ2 = e, e.g.,

f (x1, x2) = f (x2, x1)

If we assume
f (x1, x2) = g(x1, x2) + g(x2, x1)

for some arbitrary function g, then f has the required symmetry.

If we model g(·) ∼ GP(0, k(·, ·)), then the covariance function for f is

kf = Cov(f (x), f (x ′)) = k(x , x ′) + k(σx , x ′) + k(x , σx ′) + k(σx , σx ′)

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in σ), then k(x , x ′) = k(σx , σx ′) and
k(x , σx ′) = k(σx , x ′) as swaps only occur in pairs (σ2 = e). So we can
use

kf (x , x ′) = k(x , x ′) + k(σx , x ′)

saving half the computation.

Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single
permutation σ, where σ2 = e, e.g.,

f (x1, x2) = f (x2, x1)

If we assume
f (x1, x2) = g(x1, x2) + g(x2, x1)

for some arbitrary function g, then f has the required symmetry.

If we model g(·) ∼ GP(0, k(·, ·)), then the covariance function for f is

kf = Cov(f (x), f (x ′)) = k(x , x ′) + k(σx , x ′) + k(x , σx ′) + k(σx , σx ′)

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in σ), then k(x , x ′) = k(σx , σx ′) and
k(x , σx ′) = k(σx , x ′) as swaps only occur in pairs (σ2 = e). So we can
use

kf (x , x ′) = k(x , x ′) + k(σx , x ′)

saving half the computation.

Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single
permutation σ, where σ2 = e, e.g.,

f (x1, x2) = f (x2, x1)

If we assume
f (x1, x2) = g(x1, x2) + g(x2, x1)

for some arbitrary function g, then f has the required symmetry.

If we model g(·) ∼ GP(0, k(·, ·)), then the covariance function for f is

kf = Cov(f (x), f (x ′)) = k(x , x ′) + k(σx , x ′) + k(x , σx ′) + k(σx , σx ′)

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in σ), then k(x , x ′) = k(σx , σx ′) and
k(x , σx ′) = k(σx , x ′) as swaps only occur in pairs (σ2 = e). So we can
use

kf (x , x ′) = k(x , x ′) + k(σx , x ′)

saving half the computation.

Example 3: Modelling intermolecular potentials: Ne-CO2
Uteva, Graham, W, Wheatley 2017

10 100 1000
Latin Hypercube size

10-8

10-7

10-6

10-5

10-4

10-3

R
M

SE
 [E

h]

Basic model
Non-symmetric kernel
Symmetric kernel

SPDE-INLA: Beyond GPs
Lindgren, Rue, Lindström 2011

The GP viewpoint is somewhat limited in that it relies upon us specifying
a positive definite covariance function.

How can we build boutique covariance functions? E.g. emulating SST

The SPDE-INLA approach of Lindgren, Rue, Lindström shows how any
Gauss Markov random field (somewhat like a GP) can be written as the
solution to a SPDE, which we can solve on a finite mesh.

This gives us more modelling power, but at the cost of much more
complex mathematics/algorithms.

High dimensional problems
Carbon capture and storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field)

y
f (K)y

Outputs:
Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),
...

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
10

20
30

40
50

0

10

20

30

40

50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

↓ f (K)

True truncated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01
True truncated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Surface Flux= 6.43, . . .

Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K), we can quantify our
uncertainty about S = f (K).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K) ≤ s)

Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f (K) denote this mapping

f : K → S

For most problems the permeability K is unknown.

If we assume a distribution for K ∼ π(K), we can quantify our
uncertainty about S = f (K).

e.g., by finding the cumulative distribution function (CDF) of S:

F (s) = P(f (K) ≤ s)

UQ for complex computer models

Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑

i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution
However the cost of the simulator means we are limited to ∼100
evaluations.

UQ for complex computer models

Gold standard approach: Monte Carlo simulation

Draw K1, . . . ,KN ∼ π(K), and
evaluate the simulator at each
giving fluxes
s1 = f (K1), . . . , sN = f (KN)

Estimate the empirical CDF

F̂ (s) =
1

N

N∑

i=1

Isi≤s

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

ECDF obtained with 57 simulator runs

Note that N = 103 is not large if we want quantiles in the tail of the
distribution
However the cost of the simulator means we are limited to ∼100
evaluations.

Multivariate Emulation
Wilkinson 2010

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,
Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data into some lower dimensional space Ypc ,
i.e., assume

y = Wypc + e

where dim(y) >> dim(ypc)
Emulate from Θ to the reduced dimensional output space Ypc

We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc , i.e., ηpc(·) : Θ → Ypc

Θ Y

Ypc

η(·)

PCA
PCA−1ηpc(·)

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 11 / 24

Any dimension reduction scheme can be used, as long as we can
reconstruct from Ypc (and quantify the reconstruction error).

Multivariate Emulation
Wilkinson 2010

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,
Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data into some lower dimensional space Ypc ,
i.e., assume

y = Wypc + e

where dim(y) >> dim(ypc)
Emulate from Θ to the reduced dimensional output space Ypc

We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc , i.e., ηpc(·) : Θ → Ypc

Θ Y

Ypc

η(·)

PCA
PCA−1ηpc(·)

R.D. Wilkinson (University of Sheffield) MUCM Manchester 2009 11 / 24

Any dimension reduction scheme can be used, as long as we can
reconstruct from Ypc (and quantify the reconstruction error).

Principal Component Emulation (EOF)

1 Find the singular value decomposition of Y .

Y = UΓV ∗.

Γ contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of Y>Y).

2 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

3 Project Y onto the principal subspace to find Y pc = YV1

Why use PCA here?

The n directions are chosen to maximize the variance captured

The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)

Principal Component Emulation (EOF)

1 Find the singular value decomposition of Y .

Y = UΓV ∗.

Γ contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of Y>Y).

2 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

3 Project Y onto the principal subspace to find Y pc = YV1

Why use PCA here?

The n directions are chosen to maximize the variance captured

The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)

Principal Component Emulation (EOF)

1 Find the singular value decomposition of Y .

Y = UΓV ∗.

Γ contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of Y>Y).

2 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

3 Project Y onto the principal subspace to find Y pc = YV1

Why use PCA here?

The n directions are chosen to maximize the variance captured

The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)

Principal Component Emulation (EOF)

1 Find the singular value decomposition of Y .

Y = UΓV ∗.

Γ contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of Y>Y).

2 Decide on the dimension of the principal subspace, n∗ say, and throw
away all but the n∗ leading principal components. An orthonormal
basis for the principal subspace is given by the first n∗ columns of V ,
denoted V1. Let V2 be the matrix of discarded columns.

3 Project Y onto the principal subspace to find Y pc = YV1

Why use PCA here?

The n directions are chosen to maximize the variance captured

The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)

PLASIM-ENTS
Holden, Edwards, Garthwaite, Wilkinson 2015

Planet Simulator coupled to the terrestrial carbon model ENTS

Inputs are eccentricity, obliquity, precession describing Earth’s orbit
around the sun.

Model climate (annual average surface temperature and rainfall) and
vegetation (annual average vegetation carbon density) spatial fields
(on a 64× 32) grid.

We used an ensemble of 50 simulations

Principal components

PCA emulation

We then emulate the reduced dimension model

ηpc(·) = (η1
pc(·), . . . , ηn∗pc (·)).

Each component ηipc will be uncorrelated (in the ensemble) but not
necessarily independent. We use independent Gaussian processes for
each component.

The output can be reconstructed (accounting for reconstruction
error) by modelling the discarded components as Gaussian noise with
variance equal to the corresponding eigenvalue:

η(θ) = V1ηpc(θ) + V2diag(Λ)

where Λi ∼ N(0, Γii) (Γii = i th eigenvalue).

Leave-one-out cross validation of the emulator

For Peer Review Only

254x190mm (72 x 72 DPI)

Page 30 of 31

URL: http://mc.manuscriptcentral.com/cjas

Journal of Applied Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

We can then use the PC-emulator to do sensitivity analysis.

Comments

This approach (PCA emulation) requires that the outputs are highly
correlated.

We are assuming that the output Dsim is really a linear combination
of a smaller number of variables,

η(θ) = v1η
1
pc(θ) + . . .+ vn∗η

n∗
pc (θ)

which may be a reasonable assumption in many situations, eg,
temporal spatial fields.

Although PCA is a linear method (we could use kernel-PCA instead),
the method can be used on highly non-linear models as we are still
using non-linear Gaussian processes to map from Θ to Ypc – the
linear assumption applies only to the dimension reduction (and can
be generalised).

The method accounts for the reconstruction error from reducing the
dimension of the data.

Emulating simulators with high dimensional input
Crevilln-Garca, W., Shah, Power, 2016

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e.g. if we use a 100× 100 grid in the solver, K contains 104 entries

Impossible to directly model f : R10,000 → R

We can use the same idea to reduce the dimension of the inputs.
However, because we know the distribution of K , it is more efficient to
use the Karhunen-Loève (KL) expansion of K (rather than learn it
empirically as in PCA)

K = exp(Z) where Z ∼ GP(m,C)

Z can be represented as

Z (·) =
∞∑

i=1

λiξiφi (·)

where λi and φi are the eigenvalues and eigenfunctions of the
covariance function of Z and ξi ∼ N(0, 1).

Emulating simulators with high dimensional input
Crevilln-Garca, W., Shah, Power, 2016

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,

e.g. if we use a 100× 100 grid in the solver, K contains 104 entries

Impossible to directly model f : R10,000 → R
We can use the same idea to reduce the dimension of the inputs.
However, because we know the distribution of K , it is more efficient to
use the Karhunen-Loève (KL) expansion of K (rather than learn it
empirically as in PCA)

K = exp(Z) where Z ∼ GP(m,C)

Z can be represented as

Z (·) =
∞∑

i=1

λiξiφi (·)

where λi and φi are the eigenvalues and eigenfunctions of the
covariance function of Z and ξi ∼ N(0, 1).

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.

True streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01
Emulated streamfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

True concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Emulated concfield

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predictive performance vs n = no. of KL components

We can assess the accuracy of the
emulator by examining the prediction
error on a held-out test set. Plotting
predicted vs true value indicates the
accuracy the GP emulator.

We can also choose the number of KL components to retain using
numerical scores

CCS simulator results - 20 simulator training runs

Blue line = CDF from using 103 Monte Carlo samples from the simulator
Red line = CDF obtained using emulator (trained with 20 simulator runs,
rational quadratic covariance function)

Comments
The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.

PCA may be a poor dimension reduction for the inputs.
Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d = f (x) y = g(x)

where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.
There is a trade-off in the dimension reduction.

I The more we reduce the dimension of the input the easier the
regression becomes, but we lose more info in the compression.

I Less dimension reduction leads to less information loss, but the
regression becomes harder.

Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.

Comments
The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.
PCA may be a poor dimension reduction for the inputs.
Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d = f (x) y = g(x)

where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.

There is a trade-off in the dimension reduction.
I The more we reduce the dimension of the input the easier the

regression becomes, but we lose more info in the compression.
I Less dimension reduction leads to less information loss, but the

regression becomes harder.

Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.

Comments
The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.
PCA may be a poor dimension reduction for the inputs.
Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d = f (x) y = g(x)

where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.
There is a trade-off in the dimension reduction.

I The more we reduce the dimension of the input the easier the
regression becomes, but we lose more info in the compression.

I Less dimension reduction leads to less information loss, but the
regression becomes harder.

Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.

Comments
The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.
PCA may be a poor dimension reduction for the inputs.
Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d = f (x) y = g(x)

where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.
There is a trade-off in the dimension reduction.

I The more we reduce the dimension of the input the easier the
regression becomes, but we lose more info in the compression.

I Less dimension reduction leads to less information loss, but the
regression becomes harder.

Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.

Model discrepancy

An appealing idea
Kennedy and O’Hagan 2001

Lets acknowledge that most models are imperfect.

Can we expand the class of models by adding a GP to our simulator?

If f (x) is our simulator, d the observation, then perhaps we can correct f
by modelling

y = f (x) + δ(x) where δ ∼ GP

An appealing idea
Kennedy and O’Hagan 2001

Lets acknowledge that most models are imperfect.
Can we expand the class of models by adding a GP to our simulator?

If f (x) is our simulator, d the observation, then perhaps we can correct f
by modelling

y = f (x) + δ(x) where δ ∼ GP

An appealing, but flawed, idea
Kennedy and O’Hagan 2001, Brynjarsdottir and O’Hagan 2014

Simulator Reality

f (x) = xθ g(x) =
θx

1 + x
a

θ = 0.65, a = 20

No MD

chains$beta

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0

GP prior on MD

chains3$beta

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

Uniform MD on [−1,1]

chains2b$beta

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
10

00
20

00

Uniform MD on [−0.5,0.5]

chains2$beta

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00

Bolting on a GP can correct your predictions, but won’t necessarily fix
your inference.

Design

Design

We build GPs using data {xi , yi}ni=1

Call the collection Xn = {xi}ni=1 ⊂ Rd the design

For observational studies we have no control over the design, but we do
for computer experiments!

GP predictions made using a good design will be better than those
using a poor design (Cf location of inducing points for sparse GPs)

What are we designing for?

Global prediction

Calibration

Optimization - minimize the Expected Improvement (EI)?

Design for global prediction
e.g. Zhu and Stein 2006

For a GP with known hyper parameters, space filling designs are good as
the minimize the average prediction variance

Latin hypercubes, maximin/minimax, max. entropy

However, if we only want to estimate hyperparameters then maximize

det I(θ) = − detE
(
∂2

∂θ2
f (X ; θ)

)

Usually, we want to make good predictions after having estimated
parameters, and a trade-off between these two criteria has been proposed.

36 Z. ZHU AND M. L. STEIN

Figure 1. Plots of designs for prediction with unknown parameters. For all the plots ϕ = 0.5 and σ2 = 1.

the plug-in kriging predictor and the plug-in kriging variance at the evaluation grid E. The
true MSPE of the plug-in kriging prediction and the MSE of the ratio M(s; θ̂)/M(s; θ) are
shown in Table 1. The table shows that the true MSPE of the plug-in prediction for DEA

and DAKV designs are very close, but the DEA designs give better estimates of MSPE. The
improvement is always substantial and sometimes dramatic.

In practice, the true parameters of the process are unknown and it is desirable to have
a design that has good performance for a range of parameters. As a simple example, we
calculated the relative efficiency for the six parameter combinations considered in Figure
1, and found that the design for ν = 0.5 and τ 2 = 0.01 minimizes the maximum rela-
tive efficiency among the six designs, which we will refer to as the minimax design. The
maximum relative efficiency is 1.045, meaning that, in the worst case, the EA criterion for
the minimax design is 4.5% larger than that for the best design we obtained for the true
parameter values. In Table 2, simulation results for the minimax design are compared with
the DAKV design for several different parameters. In all cases the minimax design gives

Table 1. Comparison of DEA (estimation adjusted, (2.16)) and DAKV (average kriging variance) Designs
Using Simulation

(ν, τ2) (0.5, 0.01) (1.0, 0.01) (1.0, 0.10) (3.0, 0.10)

Design DEA DAKV DEA DAKV DEA DAKV DEA DAKV

True MSPE 0.111 0.108 0.109 0.115 0.260 0.253 0.167 0.167
MSE of Ratio 0.273 1.273 0.438 1.318 0.217 0.317 0.159 0.270

Notes: Results are based on 500 simulations. For all designs ϕ = 0.5, σ2 = 1 and the sample size n = 30.

Sequential design

The designs above are all ‘one-shot’ designs and can be wasteful.
Instead we can use adaptive/sequential designs/active learning and add a
point at a time:

Choose location xn+1 to maximize some criterion/acquisition rule

C (x) ≡ C (x | {xi , yi}ni=1)

Generate yn+1 = f (xn+1)

For optimization, we’ve seen that a good criterion for minimizing f (x) is
to choose x to maximize the expected improvement criterion

C (x) = E[(min
i=1,...,n

yi − f (x))+]

Sequential design for global prediction
Gramacy and Lee 2009, Beck and Guillas 2015

Many designs work on minimizing some function of the predictive
variance/MSE

s2
n(x) = Var(f (x)|Dn)

Active learning MacKay (ALM): choose x at the point with largest
predictive variance

Cn(x) = s2
n(x)

This tends to locate points on the edge of the domain.

Active learning Cohn (ALC): choose x to give largest expected
reduction in predictive variance

Cn(x) =

∫
s2
n(x ′)− s2

n∪x(x ′)dx ′

ALC tends to give better designs than ALM, but has cost
O(n3 + NrefNcandn

2) for each new design point

Sequential design for global prediction
Gramacy and Lee 2009, Beck and Guillas 2015

Many designs work on minimizing some function of the predictive
variance/MSE

s2
n(x) = Var(f (x)|Dn)

Active learning MacKay (ALM): choose x at the point with largest
predictive variance

Cn(x) = s2
n(x)

This tends to locate points on the edge of the domain.

Active learning Cohn (ALC): choose x to give largest expected
reduction in predictive variance

Cn(x) =

∫
s2
n(x ′)− s2

n∪x(x ′)dx ′

ALC tends to give better designs than ALM, but has cost
O(n3 + NrefNcandn

2) for each new design point

Sequential design for global prediction
Gramacy and Lee 2009, Beck and Guillas 2015

Many designs work on minimizing some function of the predictive
variance/MSE

s2
n(x) = Var(f (x)|Dn)

Active learning MacKay (ALM): choose x at the point with largest
predictive variance

Cn(x) = s2
n(x)

This tends to locate points on the edge of the domain.

Active learning Cohn (ALC): choose x to give largest expected
reduction in predictive variance

Cn(x) =

∫
s2
n(x ′)− s2

n∪x(x ′)dx ′

ALC tends to give better designs than ALM, but has cost
O(n3 + NrefNcandn

2) for each new design point

Sequential design for global prediction
Gramacy and Lee 2009, Beck and Guillas 2015

Many designs work on minimizing some function of the predictive
variance/MSE

s2
n(x) = Var(f (x)|Dn)

Active learning MacKay (ALM): choose x at the point with largest
predictive variance

Cn(x) = s2
n(x)

This tends to locate points on the edge of the domain.

Active learning Cohn (ALC): choose x to give largest expected
reduction in predictive variance

Cn(x) =

∫
s2
n(x ′)− s2

n∪x(x ′)dx ′

ALC tends to give better designs than ALM, but has cost
O(n3 + NrefNcandn

2) for each new design point

Sequential design for global prediction
MICE: Beck and Guillas 2015

The Mutual Information between Y and Y ′ is

I(Y ;Y ′) = H(Y)−H(Y | Y ′) = KL(py ,y ′ ||pypy ′)
Choose design Xn to maximize mutual information between f (Xn) and
f (Xcand \ Xn) where Xcand is a set of candidate design points.
A sequential version for GPs reduces to choosing x to maximize

Cn(x) =
s2
n(x)

scand\(n∪x)(x , τ2)

20 JOAKIM BECK AND SERGE GUILLAS

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 R
M

SP
E

Number of design points

ALM-1000
ALC-150

MICE-150, τs
2=1

MICE-150, τs
2=10-12

MmLHD
mMLHD

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 R
M

SP
E

Number of design points

τs
2=10-12

10-6

10-3

10
100

1

Figure 10. Left: comparison between algorithms for the Oscillatory function over [0, 1]4. Right: the
performance with MICE-150 for different choices of τ2

s .

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 R
M

SP
E

Number of design points

ALM-1000
ALC-150

MICE-150, τs
2=1

MICE-150, τs
2=10-12

MmLHD
mMLHD

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 R
M

SP
E

Number of design points

τs
2=10-12

10-6

10-3

1
10

100

Figure 11. Left: comparison between algorithms for the Oscillatory function over [0, 1]8. Right: the
performance with MICE-150 for different choices of τ2

s .

5.2. Piston simulation function. Here we consider a 7-dimensional example from [2],
where the output describes the circular motion of a piston within a cylinder; it obeys the
following equations:

y(x) = 2π

�

x1

x2 + x2
3

x4x5
x6

x7
g1(x)

, where g1(x) =
x3

2x2

��

g2
2(x) + 4x2

x4x5

x6
x7 − g2(x)

�

g2(x) = x3x4 + 19.62x1 −
x2x5

x3

Here y(x) is the cycle time (s) which varies with seven input variables. The design space
is given by x1 ∈ [30, 60] (piston weight, kg), x2 ∈ [1000, 5000] (spring coefficient, N/m),
x3 ∈ [0.005, 0.020] (piston surface area, m2), x4 ∈ [90000, 110000] (atmospheric pressure,
N/m2), x5 ∈ [0.002, 0.010] (initial gas volume, m3), x6 ∈ [340, 360] (filling gas temper-
ature, K) and x7 ∈ [290, 296] (ambient temperature, K). The nonlinearity makes this
deterministic computer experiment problem challenging to emulate. MICE-300 yields a
slight improvement over MICE-150, see Figure 12. MICE with 300 candidate points is

SEQUENTIAL DESIGN WITH MUTUAL INFORMATION 21

 0.01

 0.1

 20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 R
M

SP
E

Number of design points

ALM-1000
ALC-150

MICE-150, τs
2=1

MICE-300, τs
2=1

MmLHD
mMLHD

 0

 10000

 20000

 30000

 40000

 50000

 60000

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

R
un

tim
e

(s
)

Number of design points

Tcand
Tmle

Tselect

MICE-300MICE-150ALC-150

Figure 12. Results for the 7-D Piston Simulation function.

not that much more expensive than with 150; in fact, it is significantly cheaper compu-
tationally than ALC with 150. Again, the proposed algorithm MICE performs the best.
For high-dimensional problems, ALM tends to be the worst, probably due to the high
percentage of points on the boundary.

6. Application to a tsunami simulator. There is a pressing need in tsunami modeling
for uncertainty quantification with the specific purpose of providing accurate risk maps or
issuing informative warnings. Sarri, Guillas and Dias [27] were the first to demonstrate
that statistical emulators can be used for this purpose. Recently, Sraj et al. [32] studied
the propagation of uncertainty in Manning’s friction parameterization to the prediction
of sea surface elevations, for the Tohoku 2011 tsunami event. They used a polynomial
chaos (PC) expansion as the surrogate model of a low resolution tsunami simulator. Note
that Bilionis and Zabaras [3] showed that GP emulators can outperform PC expansions
when small to moderate-sized training data are considered. Stefanakis et al. [33] used an
active experimental design approach for optimization to study if small islands can protect
nearby coasts from tsunamis.

We consider here the problem of predicting the maximum free-surface elevation of a
tsunami wave at the shoreline, for a wide range of scenarios, following a subaerial landslide
at an adjoining beach across a large body of shallow water. A tsunami wave simulator is
used. A landslide of seafloor sediments, initially at the beach, has a Gaussian shaped mass
distribution, and generates tsunami waves that propagates towards the opposite shoreline
across from the beach (see Figure 13). The sea-floor bathymetry is changing over time,
and is used as input to the tsunami simulator. The floor motion is described by the
change in bathymetry of the sloping beach over time, h(x, t) = H(x) − h0(x, t), where
H(x) = x tan β is the static uniformly sloping beach, and h0(x, t) = δ exp

�

−(x̃ − t̃)2
�

is

the perturbation with respect to H(x, t). Here x̃ = 2 xµ2

δ tan φ1
, t̃ =

�

g
δµt, δ is the maximum

vertical slide thickness, µ is the ratio of the thickness and the slide length, and tanφ1 is
the beach slope. The free surface elevation is defined as z(x, t) = −h(x, t). It is assumed
the initial water surface is undisturbed, that is, z(x, 0) = 0 for all x. The slope tanφ2 of
the beach at the opposite shoreline is chosen so that the distance between the shorelines

Conclusions

You can do lots of stuff with GPs.

Thank you for listening!

Conclusions

You can do lots of stuff with GPs.

Thank you for listening!

Conclusions

You can do lots of stuff with GPs.

Thank you for listening!

