50 Ways with GPs

Richard Wilkinson

School of Maths and Statistics
University of Sheffield

Emulator workshop
June 2017



Recap

A Gaussian process is a random process indexed by some variable (x € X
say), such that for every finite set of indices, x, ..., x,, then

f = (f(Xl), ceey f(Xn))

has a multivariate Gaussian distribution.



Recap

A Gaussian process is a random process indexed by some variable (x € X
say), such that for every finite set of indices, x, ..., x,, then

f = (f(Xl), ceey f(Xn))

has a multivariate Gaussian distribution.

Why would we want to use this very restricted model?
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Answer 1
Class of models is closed under various operations.

@ Closed under addition
f(:),L(:) ~ GP then (fi+fH)(:)~ GP
@ Closed under Bayesian conditioning, i.e., if we observe
D = (f(x1),...,f(xn))

then
f|D ~ GP

but with updated mean and covariance functions.

@ Closed under any linear operation. If £ is a linear operator, then
Lof~ GP(Lom,L?ok)

e.g. %, J f(x)dx, Af are all GPs
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Answer 2: non-parametric/kernel regression
k determines the space of functions that sample paths live in.

o Linear regression y = x ' 3 + € can be written solely in terms of inner

products x ' x.

B = argmin ||y — XB|[3 + o°||5][3
=(X"X+o2NX"y
= XT(XX" +6%)7ty (the dual form)
So the prediction at a new location x’ is
)/}/ — X,TB — X,TXT(XXT + O_Z/)—ly
— K()(K +0?1) Ty
where k(x') := (X' Tx1,...,x' T x,) and Kjj := x| x;
@ We know that we can replace x by a feature vector in linear
regression, e.g., ¢(x) = (1 x x?) etc.
Then
Ki=o(x) o(x) et
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the feature vector, only the kernel.
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x'x" by k(x,x")



@ For some sets of features, the inner product is equivalent to
evaluating a kernel function

d(x) " o(x') = k(x,x)
where
k: XxX =R

is a semi-positive definite function.

@ We can use an infinite dimensional feature vector ¢(x), and because
linear regression can be done solely in terms of inner-products
(inverting a n x n matrix in the dual form) we never need evaluate
the feature vector, only the kernel.

Kernel trick: lift x into feature space by replacing inner products
x'x" by k(x,x")
Kernel regression/non-parametric regression/GP regression all closely
related:

P =mKx)= Za;k(x,x,-)
i=1
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Generally, we don't think about these features, we just choose a kernel.
But any kernel is implicitly choosing a set of features, and our model only
includes functions that are linear combinations of this set of features (this
space is called the Reproducing Kernel Hilbert Space (RKHS) of k).

Example: If (modulo some detail)

(x—c1)? _ (x—cp)

d(x)=(e" 22 ,...,e 22 )

then as N — oo then

60" o0x) = erp (-5

Although our simulator may not lie in the RKHS defined by k, this space
is much richer than any parametric regression model (and can be dense in
some sets of continuous bounded functions), and is thus more likely to
contain an element close to the simulator than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.
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Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

One answer might come from Bayes linear methods®.
If we only knew the expectation and variance of some random variables,
X and Y/, then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X]Y) = E(X) + Cov(X, Y)Var(Y) (Y — E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

1Some crazy cats think we should do statistics without probability
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Answer 4: Uncertainty estimates from emulators

We often think of our prediction as consisting of two parts
@ point estimate
@ uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects (see Lindsay's talk)
Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = X,y
Var(f(x)|X, y) = k(x,x) = k(x, X)k(X, X) " k(X, x)
so that the posterior variance of f(x) does not depend upon y!

The variance estimates are particularly sensitive to the hyper-parameter
estimates.
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Example 1: Easier regression

PLASIM-ENTS: Holden, Edwards, Garthwaite, W 2015

Emulate spatially resolved precipitation as
a function of astronomical parameters:

® eccentricity, precession, obliquity.

@ Using a linear regression emulator (on
the EOFs/principal components),
selecting terms using stepwise
regression etc, we got an accuracy of
63%.

o After much thought and playing
around, we realised we could improve
the accuracy by using trigonometric
transformations of the inputs. This
gave an accuracy of 81%.

o A GP gave us 82% accuracy (straight
out of the box) with no need for
transformations.



Example 2: Estimating gas laws for CCS
Cresswell, Wheatley, W., Graham 2016
PV = nRT is an idealised law that holds in the limit.

@ it doesn't apply when the gas is near its critical point

@ gasses are most easily transported in the super-critical region.

@ Impurities in the COy (SO2 etc) change the fluid behaviour.

@ We only have a few measurements of fluid behaviour for impure CO2.

/Vlvg P(v)dv = Ps(vg—v)

10

at P=P,, T =T. By
incorporating this
information we were able
to make more accurate

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035 H H
predictions.
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Example 3: Symmetry
Suppose we are modelling a function that is invariant under the single

permutation o, where 62 = e, e.g.,

f(Xl,XQ) = f(Xg,Xl)
If we assume
f(x1,x2) = g(x1,x2) + g(x2, x1)
for some arbitrary function g, then f has the required symmetry.

If we model g(-) ~ GP(0, k(-,-)), then the covariance function for f is
ks = Cov(f(x), f(x')) = k(x,x") + k(ox,x") + k(x,ox") + k(ox,0x")

If k is an isotropic kernel (we only actually require isotropy for each pair
of vertices that swap in &), then k(x,x’) = k(ox,ox’) and
k(x,ox") = k(ox,x") as swaps only occur in pairs (02 = e). So we can
use

ke(x,x") = k(x,x") + k(ox,x")

saving half the computation.



Example 3: Modelling intermolecular potentials: Ne-CO2
Uteva, Graham, W, Wheatley 2017
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SPDE-INLA: Beyond GPs

Lindgren, Rue, Lindstrom 2011
The GP viewpoint is somewhat limited in that it relies upon us specifying
a positive definite covariance function.

How can we build boutique covariance functions? E.g. emulating SST

The SPDE-INLA approach of Lindgren, Rue, Lindstrém shows how any
Gauss Markov random field (somewhat like a GP) can be written as the
solution to a SPDE, which we can solve on a finite mesh.

This gives us more modelling power, but at the cost of much more
complex mathematics/algorithms.



High dimensional problems
Carbon capture and storage

Knowledge of the physical problem is encoded in a simulator f

Inputs:
Permeability field, K
(2d field)

£(K)

Outputs:
Stream func. (2d field),
concentration (2d field),
surface flux (1d scalar),

Surface Flux=6.43, ...



Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f(K) denote this mapping

f:K—S

For most problems the permeability K is unknown.



Uncertainty quantification (UQ) for CCS

The simulator maps from permeability field K to outputs such as the
surface flux S. Let f(K) denote this mapping

f:K—S

For most problems the permeability K is unknown.

If we assume a distribution for K ~ 7(K), we can quantify our
uncertainty about S = f(K).

@ e.g., by finding the cumulative distribution function (CDF) of S:

F(s) = P(f(K) < s)



UQ for complex computer models

Gold standard approach: Monte Carlo simulation

e Draw Ki,...,Ky ~ m(K), and
evaluate the simulator at each

giving fluxes
s1 = f(K1),...,sn = f(Kn)
@ Estimate the empirical CDF

- 1
F(s) = N Z]Is,és
i=1
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UQ for complex computer models

Gold standard approach: Monte Carlo simulation

e Draw Ki,...,Ky ~ m(K), and
evaluate the simulator at each
giving fluxes
51 = f(Kl), L. SN = f(KN)

@ Estimate the empirical CDF

. 1
F(s) = N Z]Is,és
i=1

1

ECDF obtained with 57 simulator runs

0.9+

52 54 56 58 6 6.2

6.4

Note that N = 103 is not large if we want quantiles in the tail of the

distribution

However the cost of the simulator means we are limited to ~100

evaluations.
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@ Build independent or separable multivariate emulators,
@ Linear model of coregionalization?



Multivariate Emulation
Wilkinson 2010
How can we deal with multivariate ouput?
@ Build independent or separable multivariate emulators,
@ Linear model of coregionalization?
Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data into some lower dimensional space VP,
i.e., assume
y =Wyl +e
where dim(y) >> dim(y®°)
Emulate from © to the reduced dimensional output space )P

o ()

pc(. PCA
n ( ) PCA—I



Principal Component Emulation (EOF)
@ Find the singular value decomposition of Y.
Y =Urve:.

I" contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of YT Y).
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Principal Component Emulation (EOF)
@ Find the singular value decomposition of Y.
Y =Urve:.

I" contains the singular values (sqrt of the eigenvalues), and V the
principal components (eigenvectors of YT Y).

@ Decide on the dimension of the principal subspace, n* say, and throw
away all but the n* leading principal components. An orthonormal
basis for the principal subspace is given by the first n* columns of V/,
denoted V;. Let V5 be the matrix of discarded columns.

© Project Y onto the principal subspace to find YP< = YV
Why use PCA here?

@ The n directions are chosen to maximize the variance captured

@ The approximation is the best possible rank n approximation in terms
of minimizing the reconstruction error (Frobenius/2-norm)



PLASIM-ENTS

Holden, Edwards, Garthwaite, Wilkinson 2015

@ Planet Simulator coupled to the terrestrial carbon model ENTS
@ Inputs are eccentricity, obliquity, precession describing Earth’s orbit
around the sun.

@ Model climate (annual average surface temperature and rainfall) and
vegetation (annual average vegetation carbon density) spatial fields
(on a 64 x 32) grid.

We used an ensemble of 50 simulations



Principal components




PCA emulation

We then emulate the reduced dimension model
Mpe() = (Ee(), - - ()

e Each component 77;;«: will be uncorrelated (in the ensemble) but not
necessarily independent. We use independent Gaussian processes for
each component.

@ The output can be reconstructed (accounting for reconstruction
error) by modelling the discarded components as Gaussian noise with
variance equal to the corresponding eigenvalue:

n(0) = Vinpc(0) + Vodiag(A)

where A; ~ N(0,T;) (T;; = i*" eigenvalue).



Leave-one-out cross validation of the emulator

Simulation ID1 Simulation ID50

We can then use the PC-emulator to do sensitivity analysis.



Comments

This approach (PCA emulation) requires that the outputs are highly
correlated.

We are assuming that the output Dy, is really a linear combination
of a smaller number of variables,

1(0) = V117 (0) + - .. + Var175(6)

which may be a reasonable assumption in many situations, eg,
temporal spatial fields.

Although PCA is a linear method (we could use kernel-PCA instead),
the method can be used on highly non-linear models as we are still
using non-linear Gaussian processes to map from © to JP¢ — the
linear assumption applies only to the dimension reduction (and can
be generalised).

The method accounts for the reconstruction error from reducing the
dimension of the data.



Emulating simulators with high dimensional input
Crevilln-Garca, W., Shah, Power, 2016
For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,
o e.g. if we use a 100 x 100 grid in the solver, K contains 10* entries
o Impossible to directly model f : R10:000 R



Emulating simulators with high dimensional input
Crevilln-Garca, W., Shah, Power, 2016

For the CCS simulator, the input is a permeability field which only needs
to be known at a finite but large number of locations,
o e.g. if we use a 100 x 100 grid in the solver, K contains 10* entries
o Impossible to directly model f : R10:000 R

We can use the same idea to reduce the dimension of the inputs.
However, because we know the distribution of K, it is more efficient to

use the Karhunen-Loéve (KL) expansion of K (rather than learn it
empirically as in PCA)

o K =exp(Z) where Z ~ GP(m, C)
@ Z can be represented as

Z(-)=>_ Né&isi(-)
i=1

where A\; and ¢; are the eigenvalues and eigenfunctions of the
covariance function of Z and & ~ N(0,1).



Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.
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Emulating the stream function and concentration fields
Left=true, right = emulated, 118 training runs, held out test set.
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Left=true, right = emulated, 118 training runs, held out test set.
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Predictive performance vs n = no. of KL components

We can assess the accuracy of the

emulator by examining the prediction s
error on a held-out test set. Plotting 72
predicted vs true value indicates the , .
accuracy the GP emulator. o :

We can also choose the number of KL components to retain using
numerical scores
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CCS simulator results - 20 simulator training runs
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Blue line = CDF from using 103 Monte Carlo samples from the simulator
Red line = CDF obtained using emulator (trained with 20 simulator runs,
rational quadratic covariance function)
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Comments

The optimal output dimension reduction method is probably
something like PCA, at least if what we care about is building a good
global emulator.

PCA may be a poor dimension reduction for the inputs.

Mathews and Vial 2017 describe a very interesting new approach for
optimal dimension reduction when

d=1f(x) y=gx)
where d are the observations, x the unknown (high dimensional)
field, and y the quantity you want to predict.
There is a trade-off in the dimension reduction.
» The more we reduce the dimension of the input the easier the
regression becomes, but we lose more info in the compression.
> Less dimension reduction leads to less information loss, but the
regression becomes harder.
Using global sensitivity analysis to select the most influential inputs
is a way of doing dimension reduction focused on the important
information for regression. However, it is limited to projections onto
the original coordinate axes.



Model discrepancy
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Lets acknowledge that most models are imperfect.



An appealing idea
Kennedy and O'Hagan 2001

Lets acknowledge that most models are imperfect.
Can we expand the class of models by adding a GP to our simulator?

If f(x) is our simulator, d the observation, then perhaps we can correct f
by modelling
y =f(x)+d(x) where ¢~ GP



An appealing, but flawed, idea
Kennedy and O'Hagan 2001, Brynjarsdottir and O'Hagan 2014
Simulator Reality
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Bolting on a GP can correct your predictions, but won't necessarily fix
your inference.



Design



Design

We build GPs using data {x;, y;}7_;

o Call the collection X, = {x;}7_; C R the design
For observational studies we have no control over the design, but we do
for computer experiments!

@ GP predictions made using a good design will be better than those
using a poor design (Cf location of inducing points for sparse GPs)

What are we designing for?
@ Global prediction
e Calibration

e Optimization - minimize the Expected Improvement (EI)?



Design for global prediction
e.g. Zhu and Stein 2006
For a GP with known hyper parameters, space filling designs are good as
the minimize the average prediction variance
@ Latin hypercubes, maximin/minimax, max. entropy
However, if we only want to estimate hyperparameters then maximize
2

detZ(0) = —detE <§02 f(X;G))

Usually, we want to make good predictions after having estimated
parameters, and a trade-off between these two criteria has been proposed.
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Sequential design

The designs above are all ‘one-shot’ designs and can be wasteful.
Instead we can use adaptive/sequential designs/active learning and add a
point at a time:

@ Choose location x,4+1 to maximize some criterion/acquisition rule

C(x) = Clx [ {xi, yi}i=1)
e Generate ypi1 = f(Xpt+1)

For optimization, we've seen that a good criterion for minimizing f(x) is
to choose x to maximize the expected improvement criterion

C(x) =E[(,_min yi = f(x))+]



Sequential design for global prediction
Gramacy and Lee 2009, Beck and Guillas 2015

Many designs work on minimizing some function of the predictive
variance/MSE
s2(x) = Var(f(x)|D,)
@ Active learning MacKay (ALM): choose x at the point with largest
predictive variance
Ca(x) = 57(x)
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Sequential design for global prediction

Gramacy and Lee 2009, Beck and Guillas 2015
Many designs work on minimizing some function of the predictive
variance/MSE

s2(x) = Var(f(x)|D,)

n

@ Active learning MacKay (ALM): choose x at the point with largest
predictive variance
Ca(x) = 57(x)
This tends to locate points on the edge of the domain.

@ Active learning Cohn (ALC): choose x to give largest expected
reduction in predictive variance

Colx) = / $2(x') — 52, (x')dx’

ALC tends to give better designs than ALM, but has cost
O(n® + Nyer Neangn?) for each new design point



Sequential design for global prediction
MICE: Beck and Guillas 2015
The Mutual Information between Y and Y’ is

Z(Y; Y') = H(Y) = H(Y | V') = KL(py.y[Ipypy)

Choose design X, to maximize mutual information between f(X,) and
f(Xcand \ Xn) where Xcang is a set of candidate design points.
A sequential version for GPs reduces to choosing x to maximize

2
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You can do lots of stuff with GPs.

Thank you for listening!



