
School of something
FACULTY OF OTHER
School of Mathematics
FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

Modelling	discontinuities	in	simulator
output	using	Voronoi tessellations

John	Paul	Gosling	(University	of	Leeds)

and

Chris	Pope,	Jill	Johnson	and	Stuart	Barber	(University	of	Leeds)
Paul	Blackwell	(University	of	Sheffield)



Overview

1. Why	bother	with	discontinuities?

2. Attempts	to	split	the	space	of	interest.
3. Sampling	to	find	discontinuities.
4. Application	in	climate	science.

DISCLAIMER: This	is	(still)	work-in-progress:	there	are	
many	aspects	that	we	need	to	sort	out	and	
improve.



Motivation

Heterogeneity	can	
occur	in	spatial	
processes.

Discontinuities	can	
create	challenges	
for	modelling.

Transformations	
can	only	get	us	so	
far.



Motivation

Heterogeneity	can	
occur	in	spatial	
processes.

Discontinuities	can	
create	challenges	
for	modelling.

Transformations	
can	only	get	us	so	
far.



Motivation

Heterogeneity	can	
occur	in	spatial	
processes.

Discontinuities	can	
create	challenges	
for	modelling.

Transformations	
can	only	get	us	so	
far.



GP	emulation	(or	kriging)

Our	regression	building	block	for	this	talk	is	a	Gaussian	process	
regression	model:

𝑓 . ~	𝐺𝑃 𝑚 . , 𝜎*𝑐 . , . .

We	observe	𝑓 . at	a	limited	number	of	points,	and	we	can	
update	this	prior.	

We	have	used	both	Gaussian	and	Matérn	correlation	functions.
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Classification	trees

Classification	trees	are	learning	analogues	of	decision	trees.
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Nice	R	implementation:	tgp package.
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Voronoi	tessellations

Tiles	are	defined	completely	by	a	set	of	centres.

A	point	lies	on	a	
tile	if	it	is	closest	
to	that	tile’s	
centre.	

A	point	lies	on	a	
boundary	if	it	is	
equally	close	to	
more	than	one	
centre.



Voronoi	tessellations

Note	that	our	“regions”	do	not	need	to	be	made	up	of	
neighbouring	tiles.



Our	model

Input	space	is	divided	into	disjoint	regions:	each	contain	a	
number	of	Voronoi	tiles.
Each	region	has	an	independent	GP	model:

where	𝜋(. |. ) denotes	a	multivariate	normal	pdf	derived	from	the	
GP	model.

We	have	extended	the	model	of	Kim	et	al. (2005)	in	several	
ways.

𝑙 𝒚 𝒙,𝒃, 𝜷, 𝝈*, 𝒕 ∝ 	8𝜋 𝒚9|𝒙9,𝒃9,𝜎9*,𝜷9, 𝒕 ,
:

9;<



Priors

The	prior	for	the	region	specification	is

𝜋 𝒕 = 	𝜋 𝑚, 𝒄 𝜋 𝑧 𝑚 𝜋 𝑸 𝑚, 𝑧 .

And	an	additional	prior	constraint	that	says	we	can	only	have	a	
region	if	there	are	enough	training	points	to	fit	a	GP.

Poisson	point	process	with	
some	sensible	intensity

Discrete	uniform	over	[1,m]

Discrete	uniform	over	
ordered	partitions:
1, 𝑚BC	Bell	number
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Reversible-jump-MCMC:

GP	MAP	estimates	within	birth/death/move and	
relationship-changeMH;
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autocorrelation	and	convergence;



Implementation

Reversible-jump-MCMC:

GP	MAP	estimates	within	birth/death/move and	
relationship-changeMH;

Start	off	100	MCMC	chains	from	random	points	in	
model	space;
Run	each	chain	for	10,000	iterations	and	checking	for	
autocorrelation	and	convergence;
Hope	that	you	have	something	that	has	converged…

We	need	to	be	wary	of	identifiability	issues	and	local	maxima.	



Toy	example

Another	step	function.
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Predictive	mean

Voronoi	GP	model Standard	GP	model
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Predictive	mean

Voronoi	GP	model Treed	GP	model



Toy	example

Predictive	mean

Treed	GP	model

MAP	division



Toy	example

From	our	posterior,	
we	can	get	various	
plausible	
tessellations.



Toy	example

Predictive	mean

Voronoi	GP	model

Predictive	std	dev.



Toy	example

We	can	also	look	at	our	MAP	
tessellation	and	the	probabilities	
of	getting	different	numbers	of	
regions.











MSE:	1.98 MSE:	1.84



Spatial	statistics	example

In	the	context	of	traditional	kriging,	we	considered	ammonia	
concentration	at	ground	level	across	250	US	sites	(2007).



Spatial	statistics	example



Spatial	statistics	example

NH4



Proposing	new	points

To	improve	estimation,	we	could

1) Target	areas	with	high	uncertainty;
2) Just	continue	with	a	space	filling	theme;
3) Try	to	improve	our	estimation	of	the	region	boundaries.

Finding	points	that	lie	on	a	boundary	in	2d	is	relatively	simple.
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Proposing	new	points

Algorithm	that	lacks	subtlety:
1) Randomly choose a centre within region of interest.

2) Randomly choose a point on the boundary from that centre’s Voronoi tile.

3) Check if the point is on edge of region, and keep if it is.

4) Repeat 1-3 many times to get candidate set.



Proposing	new	points

Algorithm	that	lacks	subtlety:
1) Randomly choose a centre within region of interest.

2) Randomly choose a point on the boundary from that centre’s Voronoi tile.

3) Check if the point is on edge of region, and keep if it is.

4) Repeat 1-3 many times to get candidate set.

Then	attempt	to	maintain	space-filling	property:
1) Find point in candidate set that is furthest from the training points.

2) Add that point to set of training points.

3) Find point in remaining candidate set that is furthest from the training 
points and the added point.

4) Add that point to set of training points.

5) Continue repeating process until enough points are found.



Toy	example	revisited

We	decide	that	we	can	
afford	to	sample	at	five	
extra	points.
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Toy	example	revisited

We	decide	that	we	can	
afford	to	sample	again	at	
five	extra	points.



Toy	example	revisited

Second	data	set Third	data	set



Modelling	a	Cloud	Field

Cloud fields are a prime example of non-stationary behaviour 
in the natural world.

Coverage	fraction	stratocumulus	stratiformis



Modelling	a	Cloud	Field

Exploring	the	sensitivity	of	cloud	fraction	to	uncertainty	in	aerosol	
concentration.
Eddy/cloud	resolving	model	(System	for	Atmospheric	Modelling)

Grid	mesh:	 Dx	=	Dy	=	200	m,	 Dz	=	10	m,
Dt	=	2	s;

Domain	size: 40	km	x	40	km	x	1.5	km.

The	model	is	reasonably	expensive:	approx.	3	hours	per	run,
with	240	cores	on	a	760	Tflop	Cray	computer	cluster.



Modelling	a	Cloud	Field

We	have	run	an	ensemble	of	simulations	according	to	a	Latin	
hypercube	design	of	size	105 over	a	6d parameter	space.	





Emulation	results

The	MAP	model	has	two	regions:	one	with	87	centres	and	the	
other	with	18.
We	have	posterior	probabilities	of:

Pr(1	region)	=	0.14,	Pr(2	regions)	=	0.66,	Pr(3	regions)	=	0.20.

We	have	30	“test”	runs	of	the	cloud	model.

We	can	also	perform	other	standard	emulator	diagnostics.

Method MSE	of	prediction
Standard	GP 0.028
Treed	GP 0.032
Voronoi GP 0.016



Visualisation	difficulties

Here	are	points	that	lie	on	the	
boundary	between	regions	
(based	on	the	MAP	estimate).



Visualisation	difficulties

Each	square	in	the	
picture	gives	the	
proportion	of	
points	that	fall	in		
region	1	when	we	
consider	the	4d	
grid	of	points	for	

jx-ithat	particular	x
combination.

Darker	->	higher	
proportion.	



Cloud	modelling	next	steps

• We	have	rerun	the	analysis	including	the	validation	points	
and	found	a	new	MAP	boundary.

• We	have	now	passed	30	candidate	points	to	the	model	
owners	to	help	us	refine	the	region	boundaries.

We	need	to	think	of	a	sensible	way	to	describe	this	
(potentially)	4d	region	to	them…



Updated	results

Each	square	in	the	
picture	gives	the	
proportion	of	
points	that	fall	in		
region	1	when	we	
consider	the	4d	
grid	of	points	for	

jx-ithat	particular	x
combination.

Darker	->	higher	
proportion.	



Possible	extensions

• Why	stop	at	straight	lines	and	convex	regions?

• Why	stick	to	Gaussian	processes?
• Our	approach	is	related	to	k-nearest-neighbour	classification	
and	regression	– ML	methods	for	computations	and	
visualisations?
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Possible	extensions

• Why	stop	at	straight	lines	and	convex	regions?

• Why	stick	to	Gaussian	processes?
• Our	approach	is	related	to	k-nearest-neighbour	classification	
and	regression	– ML	methods	for	computations	and	
visualisations?

Standard	Voronoi	with	city-block	distance.
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