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Overview
• Inverse Modelling


• Bayesian Calibration


• Model discrepancy


• Kennedy & O’Hagan


• History Matching


• Why Discrepancy Matters


• Example 1 - Do present day models work in the LGM


• Example 2 - Heart Modelling



Inverse Modelling
• We have a model of some process


• Mathematically we can write this as y=f(x)


• We collect data on the model outputs (y) and want to make 
inferences on x - the model inputs


• Set up loss function (or likelihood) and optimise

X
(yi � f(xi))

2



Bayesian Calibration

• A more sophisticated approach is to use Bayes theorem 
do the inversion


• Rather than a point estimate we now get a posterior 
distribution for x


• Usually done by MCMC (or similar)

p(x|y) = p(y|x)p(x)
p(y)



The Role of an Emulator

• These are computationally expensive procedures


• Emulators are cheap alternatives to full models


• Use emulators to do the calculations



Model Discrepancy

• All models are wrong


• (All data are wrong as well)


• How wrong are we prepared to be? (Tolerance to error)


• Does model discrepancy matter?
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• Could we not add the model discrepancy to our model?


• Identifiability problems



Kennedy and O’Hagan 
(2001)

• To account for discrepancy KOH simultaneously fit two 
Gaussian processes.


- One is an emulator for the model


- The other models the discrepancy


• Identifiability


• Brynjarsdottir and O’Hagan (2014) - strong priors needed



An Alternative

• Don’t try to find the ‘best’ inputs


• Find inputs (x) that are implausible given the data (y)


• This is a lot easier


• No optimisation


• No sampling posterior



History Matching

• Set up a measure of the distance between the data and 
the model prediction


• If this distance is too far. That value of x is implausible

Imp =

s
E(y � f(x))2

V (y � f(x))



• We can expand the variance term to give


• Where Vy is the variance of y


• and Vf(x) is the variance of f(x) 

• For Imp > 3 we say that the inputs (x) are implausible 
(Pukelsheim (1994))

Imp =

s
(y � E(f(x)))2

V

y

+ V

f(x)



• Because we are using an emulator we can expand Vf(x)


• y is the variance of the data y


• Vemul is the emulator variance


• Vdisc is the model discrepancy

Imp =

s
y � E(f(x))2

Vy + Vemul + Vdisc



Procedure
• Collect data


• Run designed experiment


• Build emulator


• Perform history matching


• All points with Imp <3 deemed not implausible


• If we have many metrics take max(Imp)


• These constitute the Not Ruled Out Yet (NROY) space



• Design additional experiment within NROY space (wave 2)


• Rebuild emulator 


• History match


• Repeat until NROY is either small enough or does not 
shrink


• At which point we may (i) have done enough, (ii) need to 
adjust our discrepancy (iii) perform a Kennedy and 
O’Hagan calibration on NROY or (iv) collect more data
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An Example 
(Louise Kimpton’s MMath project)

• Biogeochemistry models used in palaeoclimate are tuned 
(calibrated) to present data data


• Can such a model reproduce conditions at the Last 
Glacial Maximum?


• (Biology unlike physics changes with time)



• History match the model to current data (total amount of 
carbon)


• Is data from the LGM in implausible region?



Experiment 

• Met O ran HADOCC in a 80 member Latin Hypercube (8 
uncertain parameters)


• Model has internal variability so model mean + variance 
(over last 50 years of the run)



Mean values across all 80 runs







Results

• The LGM data is not at all implausible given this 
calibration (within 3)


• In fact the present data is ‘less plausible’


• Only one wave possible



Second Example 
Heart Disease

• About 900,000 people in the UK suffer from heart failure


• Diastolic dysfunction (Heart failure with preserved ejection 
fraction) patients have high hospital re-admission (29% in 
60-90 days) and mortality rates (68% 4 year survival)


• There is no treatment despite many drug trials


• Could it be more than one condition?


• Can we use models to diagnose disease and possibly 
varieties?



• Use model from KCL (6 hour run)


• + data from an MRI scan


• Reduce MRI data using principal components from model 
ensemble (with James Salter’s extension to include the 
data)


• + data on the pressure at the top of the heart




The Model



The Data



Multidimensional History 
Matching

• Fully non-dimensional version


• Work with each variable separately


• Univariate emulators


• If one is implausible then x is implausible

(y � E(yemul))
T (⌃y + ⌃emul + ⌃disc)

�1 (y � E(yemul))



Healthy Patient

• Discrepancy elicited from experts


• No discrepancy - all of space is ruled out


• Discrepancy as tolerance to error



Wave 1: 25% of the parameter space 
remains

31



Wave 2: 6% of the parameter space 
remains

32



Wave 3: 5% of the parameter space remains

33



• More waves are unlikely to reduce space


• Could now do a calibration in the reduced space


• But for our purposes having a ‘small’ region not ruled out 
is OK


• Repeat procedure with unhealthy heart


• Similar results 


• Depending on discrepancy (tolerance to error) the two 
regions overlap or are disjoint.



Conclusions 
(Points for Discussion)

• History matching quick and easy way to calibrate models


• ‘Bayesian calibration’ - discrepancy


• K&OH - identifiability problems


• Discrepancy important - tolerance to error


• Other issues


• Model failures


• Principal components 


