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Overview

Design questions permeate many aspects of computer experiments.

Sequential screening
→ Identifying important simulator parameters.

Parameter estimation with Heteroscedastic Gaussian Process
models.
→ Learning the parameters of the surrogate model.

Calibration.
→ How well can the simulator describe the observed

system?

What design to use in each case to minimize number of simulator
evaluations needed?
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Introduction

Screening

Identify important inputs to the simulator.

Emulation

A statistical model to the computer code simulator.

Typically modelled as a Gaussian Process.

Design

Where to evaluate the simulator?

Use criterion to minimize predictive variance, parameter
uncertainty?

Standard optimal design theory does not apply to GPs as it
assumes independent homoscedastic errors.

Calibration

Understanding the simulator parameter space.
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Screening: Overview of sequential approach

High-dimensional input spaces may require more simulator
runs to train and validate the emulator.

Screening the simulator’s inputs for non-linear effects on the
output rather than distinguishing between negligible and
active effects.

Based on the elementary effects method for screening (Morris,
1991).

Utilises a threshold value to separate the inputs with linear
and non-linear effects.

Sequential to keep the number of simulator runs down to a
minimum.
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Screening review

Cheap simulators

Simulator-based functional ANOVA.

e.g. Sobol’ indices where an additive model of first and higher
order effects used.

Expensive simulators

Supersaturated design: use fewer model runs than input
dimensions by making assumptions on the number of active
inputs or the type of effects on the response

e.g. monotonicity of the model output with respect to the
inputs → sequential bifurcation (Kleijnen, 2009).

Response surface methods → a surrogate model is utilised to
approximate the simulator response.

e.g. Savitsky et al. (2011) uses a Gaussian-process with a
screening prior to encapsulate the assumptions of effect
sparsity.
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Elementary effects method: Morris (1991)

Morris Design with five trajectories

1 Based on calculation of
elementary effects (EE) for
each input variable:

EEi (x) =
f (x + ∆ei )− f (x)

∆
.

2 Use One-At-a-Time (OAT)
trajectory designs.
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Elementary effects method

1 Compute sample moments for each input factor

2 Constant or linear effect will have constant EEi and the σi
zero.

3 Linear scaling: Number of simulator runs R(K + 1) for K
factors.

4 Number of trajectories typically small to minimize simulator
evaluations, e.g. Morris (1991) used R = 3 although values
between 10 and 50 also used (Campolongo et al., 2004, 2007).

5 Initial points for trajectories random from the input space grid
(Morris, 1991) or space-filling criterion, maximising the
minimum distance between many trajectories (Campolongo et
al., 2007).
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Randomly rotated simplices

1 Caveat: design points may fall on top of each other when
projected into lower dimensions. Reduces number of available
runs after screening out unimportant factors.

2 Screen with randomly rotated simplices (Pujol, 2009) but
suboptimal effect calculation.
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Sequential Elementary effects method

Morris Design with five trajectories

1 Based on calculation of
elementary effects (EE) for
each input variable:

EEi (x) =
f (x + ∆ei )− f (x)

∆
.

2 Use One-At-a-Time (OAT)
trajectory designs, increasing
by one trajectory at each
stage.

3 If variance of EE exceeds
threshold, remove factor
from consideration.
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Sequential Elementary effects method

1 Create space-filling design of M starting points, ordering
according to the biggest distance between points.

2 Create one-at-a-time for current active factors and run the
simulator at those points.

3 Compute elementary effects and their sample moments.

4 Remove factors σi > σ0. These have non-linear effects and
should be kept for downstream analysis.

5 Got to step 2 unless all factors have been removed as
non-linear or reach maximum number of trajectories.

6 All factors remaining have constant or linear effects.
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Thresholding solely on the variance of the elementary
effects σi

1 Linear effects of factors may be removed from the simulator
output at a preprocessing stage or during the emulation phase.

2 Linear effects may be incorporated in the mean function of a
Gaussian Process emulator while omitted from the covariance
specification.
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Heuristic selection of variance threshold σ0

1 No natural units for the selection of the variance threshold.

2 Specify the threshold in terms of deviation for each factor
from a simple regression line.

Y (xi ) = axi + b + εi

where εi ∼ (0, γi ).

3 Then threshold is :

σ0 =

√
χ2

0.99,R−1

2γ

∆2(R − 1)

where χ2
0.99,R−1 is the 99% quantile of a chi-squared

distribution with R − 1 degrees of freedom.

4 Adaptive threshold as it depends on number of trajectories
used.
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Synthetic data

1 Synthetic test function introduced in Morris (1991)

2 Factors x1, . . . , x7 have a non-linear effect on the function
output while factors x8, x9, x10 have a linear effect and factors
x11, . . . , x20 have negligible effect.

3 A threshold value of γ = 2.6 was used, corresponds to around
0.005% of the range of the response y.

4 Results: 210 function evaluations R = 10 for the batch EE
procedure, 150 function evaluations required on average for
the sequential approach.

5 That is an average savings of 28% of simulator runs.
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Synthetic data results

1 Six of the seven factors with non-linear effects are identified at
the first iteration:
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Synthetic data results: Sobol’

1 Sobol’ sensitivity analysis method with 220 runs to compute
first-order and total indices results in large 95% confidence
intervals.

2 Many more runs required to reduce confidence interval.

3 Screening methods such as the EE method, can be utilised
prior to a more detailed sensitivity analysis in order to
minimise the number of model runs.
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Rabies model

1 Quantify risk of disease re-introduction by modelling the
raccoon dog vector species interactions with red fox.

2 Non-spatial and disease propagation is calculated solely with
respect to population dynamics.

3 γ = a factor has near-linear effect if the output varies no more
than ∼ 5% from linear.

4 Encapsulates both the internal variability of the stochastic
model and our prior definition of a near-linear effect.

5 Model has 13 free parameters and R = 20 → 280 simulator
evaluations for EE design was previously used (Singer and
Kennedy, 2008) .

6 Sequential approach required 102 runs ∼ 61% savings.
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Rabies model results

Two factors found to have linear effect. Solid line denotes path from

previous value of EE samples moments for each factor.

Design for screening, emulation and calibration 17/39



beamer-aston-logo

Screening summary

1 Identify inputs with non-linear effects with a minimum
number of trajectories.

2 Significant computational savings compared to the batch
approach on both synthetic data and a real-world simulator.

3 Utilise an easily interpretable variance value γ specified on the
simulator output space.

4 Use space-filling design for starting trajectory points with a
maximum size or use a low discrepancy space filling sequence.
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Random Output Simulators

Stochastic Simulator

A mapping that produces random output given a fixed set of
inputs.

Gaussian Process Approximation

In addition to having a finite number of simulator runs, uncertainty
due to stochastic simulator. Our assumed observational model is:

yi (xi ) = ti (xi ) + ε(xi )
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Approaches to Heteroscedastic Modelling

Coupled system of GPs

Model heteroscedastic variance using a coupled system of GPs.

MCMC inference, Goldberg et al (1998)

Most Likely value, Kersting et al (2007),

Variational, Lázaro and Titsias (2011).

Extended to utilise repeated observations (replicates).

Joint Likelihood Model

Coupled model too complex for design calculations.

Use parametric deterministic variance model.

Optimisation of the mean and variance model parameters
proceeds jointly → tractable optimal design calculations.

Efficient inference with replicated observations.
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Motivation: Why replicate observations?

Simulator evaluations at input locations much closer than
length scale can cause numeric difficulties.

For moderate number of simulator evaluations, inference time
can become impractical. Utilising replicate observations allows
for much quicker inference.

Learning the noise model more accurately as we will show.
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Joint Likelihood Model

Crucial simplification: consideration of only deterministic variance
models. The heteroscedastic GP prior is thus:

p(µ|θ, β) = GP
(
0,Kθ + diag(exp(fσ2(x , β))P−1

)
,

where fσ2(x , β) is the deterministic variance model.
The joint log likelihood of the sample mean µ̂ and variance s2 for
N observations:

log p(µ̂, s2|X, θ, β) =

(
N∑
i=1

log p(s2
i |β, xi , ni )

)
+logN

(
µ̂|0,Kθ + RP−1

)
,

where Kθ the GP covariance function with parameters θ, R the
diagonal matrix with elements exp (fσ2(xi , β)).

Design for screening, emulation and calibration 22/39



beamer-aston-logo

Deterministic Variance Models

Fixed Basis

Fixed Basis variance model, the log variance function is modelled as
a linear in parameters regression using a set of fixed basis functions:

fσ2(x , β) = exp
(
H(x)Tβ

)
,

where H(x) is the set of fixed basis functions with known parameters.

Latent Kernel

In high dimensional cases a non-parametric method could be con-
sidered using an additional ‘variance kernel’.

fσ2(x , β) = kTΣ (KΣ + σ2
n)−1β,

where KΣ = k(Xz ,Xz) and kΣ = k(Xz ,Xt) are the variance kernel
functions, depending on parameters θΣ and σ2

n a nugget term.
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Example of three variance models

(a) Coupled Model (b) Latent Kernel (c) Quadratic Polynomial

Comparison of the Coupled, Latent Kernel and Quadratic polynomial vari-

ance models. Training set consists of using 200 design points with 4

replicate observations at each site. Dots are the empirical means of the

samples. The black solid lines are the true function mean and standard

deviation and the blue dashed lines the GP predictions.
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Experimental Design For Correlated Processes

Design to minimise kernel parameter uncertainty →
D-optimality.

Why not minimise predictive variance instead?

Ans: All such methods either assume parameters known or
use approximate values.

D-optimal design used as preliminary design or as part of
hybrid criterion (e.g. see Zhu and Stein (2005)).
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Optimal Design for Heteroscedastic Gaussian Process
Regression with replicated observations

i

Design to minimise
parameter uncertainty →
D-optimality

Maximize Fisher information
of design ξ:

F(ξ) = E

[
∂2

∂θ2
lnL(X |θ, ξ)

]
Analytic solution derived for
GP with parametric variance
model.

Design for screening, emulation and calibration 26/39



beamer-aston-logo

Joint Likelihood: Fisher Information

The FIM for a design ξ is defined as:

F(ξ) =

∫ (
∂2

∂θ2
ln [L(X |θ, ξ)]

)
L(X |θ, ξ) dX ,

where L(X |θ, ξ) is the likelihood function.
For Joint Likelihood model FIM can be calculated analytically:

Fij =
M∑

m=1

F s
ij + FN

ij , (1)

where

M the number of design points.

F s
ij = ni−1

2
∂f
∂θi

∂f
∂θj

where ni the number of replicate

observations at design point i and ∂f
∂θj

the derivative of the

variance model f (θ) with respect to parameter θj .

FN
ij = 1

2tr(Σ−1 ∂Σ
∂θi

Σ−1 ∂Σ
∂θj

).
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Experimental Setup

Synthetic Experiment

Sample from GP with known parameters.

GP Maximum Likelihood Inference with same covariance using
different designs.

Compute parameter errors.

500 realisations.

Optimisation

Greedy: add point from candidate set that maximises F .

Simulated annealing: Global optimisation across candidate
space.
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Local Design: Latent Kernel Variance model

(a) Greedy (b) Replicate Grid (c) Grid

(d) Latin Hypercube Rep (e) Latin Hypercube (f) Sim Annealing
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Parameter errors for Latent Kernel variance model

Variance surface.
FIM (x axis) and LDM (y axis).

Variance model parameter errors

Greedy Replicate Grid Grid Latin Rep Latin Sim Ann

0.22 0.46 0.66 0.49 0.82 0.25
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Calibration - A History Matching approach

Calibration

Under what parametrisation, if any, does the computer model fit
the noisy observations?

Emulation

Use the heteroscedastic GP emulator to quickly eliminate
implausible regions of parameter space reducing the need for
simulator evaluations.

Design

For each calibration iteration, need to efficiently generate a design
for the non-implausible region.
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Calibration - A History Matching approach

Implausibility measure

I (x) = (E [f ]− z)2/(V [f ] + Vo + VMD + VE )

where

z the observed turn count.

E [f ], V [f ] the mean and variance of the replicated runs for a
given parameter setting.

Vo the observation error.

VMD model discrepancy.

VE is the sample error for the mean.
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Learning about the simulator

Varying 25 input parameters (from the many hundreds
present, guided by our experts) we could find simulator
evaluations not inconsistent with the observations.

Biggest challenge was eliciting discrepancies and uncertainties
from experts.

We used a multiple wave approach, which means emulators need
to work in smaller and smaller parts of the input space.
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Bivariate Implausibility Plots
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Using persistent homology for visualisation and design

Projection of original data coordi-

nates using multidimensional scaling.

1 Persistent homology is a
natural extension of cluster
analysis.

2 Taking clusters as its
elemental building element,
the analysis identifies
topological features such as
two-, three- and
higher-dimensional cycles in
the data.

3 Use convex bounding
regions to efficiently
generate designs in the
high-dimensional
implausibility space. Convex
hull method 70%, vs LH 2%.
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A new software framework for GPs: GPflow

Iterations per second for GPy and GPflow on a large classification task.

Use Google Tensorflow to scale up computation.

Adding a GPU, results in significant performance gains.

Task using 6 CPUs ∼ 2 days, GPU ∼ 5 hours.
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Conclusions

1 Sequential screening to quickly eliminate irrelevant
dimensions.

2 Simple heteroscedastic GP model allows for optimal design
calculation.

3 Fisher Designs minimise kernel parameter estimation variance.

4 Utilising Replicated observations beneficial for stochastic
emulation,

5 . . . particularly to identify parameters in the heteroscedastic
covariance terms.

6 Leverage HGP for efficient calibration.

7 Calibration poses new design questions.

8 Good software helps!
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Boukouvalas, A., Sykes, P., Cornford, C., Maruri-Aguilar H.,
Bayesian Precalibration of a Large Stochastic Microsimulation
Model, IEEE Transactions on Intelligent Transportation Systems,
2014.

Optimal design learning Gaussian process parameters

Boukouvalas, A., Cornford, D. Stehĺık, M., Optimal design for
correlated processes with input-dependent noise, Computational
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GPflow: A Gaussian Process Library using TensorFlow

Matthews et al, JMLR, 2017.
Design for screening, emulation and calibration 38/39



beamer-aston-logo

References

Morris, Max D. ”Factorial sampling plans for preliminary computational experiments.” Technometrics 33.2
(1991): 161-174.

Vernon, Ian, Michael Goldstein, and Richard G. Bower. ”Galaxy formation: a Bayesian uncertainty
analysis.” Bayesian Analysis 5.4 (2010): 619-669.

Zhu, Zhengyuan, and Michael L. Stein. ”Spatial sampling design for parameter estimation of the
covariance function.” Journal of Statistical Planning and Inference 134.2 (2005): 583-603.

Saltelli, Andrea, Karen Chan, and E. Marian Scott, eds. Sensitivity analysis. Vol. 1. New York: Wiley,
2000. Good review of sensitivity analysis methods.

Kersting, Kristian, et al. ”Most likely heteroscedastic Gaussian process regression.” Proceedings of the
24th international conference on Machine learning. ACM, 2007.

Titsias, Michalis K., and Miguel Lázaro-Gredilla. ”Variational heteroscedastic Gaussian process regression.”
Proceedings of the 28th International Conference on Machine Learning (ICML-11). 2011.

Goldberg, Paul W., Christopher KI Williams, and Christopher M. Bishop. ”Regression with input-dependent
noise: A Gaussian process treatment.” Advances in neural information processing systems (1998): 493-499.

Design for screening, emulation and calibration 39/39


	Introduction
	Heteroscedastic Variance Emulation and Optimal Design
	Synthetic experiments
	Conclusions

