

Introduction to emulators - the what, the when, the why

Dr Lindsay Lee

A simulator is a computer code used to represent some real world process

Understand

Which aerosol are most effective at cooling the climate?

Predict

Could aerosol be used to cool the climate for geoengineering?

- y = f(x) represents the simulation process
- y is the simulator output
- x is the simulator input
- *f* is the simulator

 $\boldsymbol{Y}=f(\boldsymbol{X})$

Computer codes are imperfect representations of the real world.

How do these imperfections affect our understanding and predictions? What is the effect on **Y**?

Uncertainty in climate simulators

The Leverhulme Trust

Figure 8.15 | Bar chart for RF (hatched) and ERF (solid) for the period 1750–2011, where the total ERF is derived from Figure 8.16. Uncertainties (5 to 95% confidence range) are given for RF (dotted lines) and ERF (solid lines).

- X are 'model inputs/parameters'
- They may be spatial fields/time series
- They may be single values used globally or regionally

UNIVERSITY OF I

Uncertainty in aerosol simulator inputs

UNIVERSITY OF LEEDS

Uncertainty in simulator inputs

- X is uncertain \rightarrow Y is uncertain
- x can be given uncertainty distribution G
- Marginally x_k has distribution G_k

Obtain $y_i = f(x_i)$ for given x_i from G

- Simulators contain lots of equations (hundreds of lines of code)
- Simulator resolution increases with computer power

f is often too complex to simulate many x_i from G to characterise the effect of uncertainty on y

- Replace f with \hat{f}
- \hat{f} is the emulator
- \hat{f} is much quicker to run but accurately represents f

• Replace $y_k = f(x)$ with $y_k = \hat{f}(x)$

Define an output (or selection of) to be emulated

- doesn't replace the whole simulator for all research

What is y?

- From the simulator y can be any/all model output/diagnostics
- For emulation y must be more restricted
- y is often a scalar representing a single model output, at a particular time and location
 - Eg.
 - global mean temperature for 2000
 - total number for particulate matter aerosol > 2.5um in a model grid box
- y could be a spatial field, or a time series, or EOF/PCAs, or a selection of model outputs

The complexity of the emulator is dependent on the complexity of the model output to be emulated

- We will carry on assuming y is scalar and x is a collection of scalar values
- $x = x_1, x_2, x_3, \dots, x_p$ for p uncertain parameters
- Use a selection of x_i , y_i from f to 'build' \hat{f}

When is an emulator useful?

uncertainty analysis

Quantify the impact of uncertainty on model output

sensitivity analysis

Understand model response to uncertain inputs

And the model is too complex to do the sampling required

An emulator that gives estimates of its own uncertainty

We tend to use the Gaussian process

- Each point in space has a Gaussian distribution
- Each collection of points has a multivariate Gaussian distribution
- The whole collection is a Gaussian process
- In its basic form requires 'smooth output'

Does not require the output to be Gaussian

The GP prior

Set up the Gaussian process prior function

 $f(\mathbf{x})|\beta,\sigma \sim GP(h(\mathbf{x})^T\beta,\sigma^2c(\mathbf{x},\mathbf{x}'))$

 $h(x)^T \beta$ is the mean function c(x, x') is the covariance function β, σ are hyperparameters

- Use the mean function to specify any functional form known to exist
- In the absence of prior information we tend to specify it as constant or a linear regression formula

- When there are very few simulator runs to give information the function is weighted towards the prior mean
- Outside the bounds of the simulator runs the emulator tends towards the prior mean
- With more (well-chosen) simulator runs the hyperparameters β are better estimated

- Can be plugged in if a particular regression model is required
- Usually use maximum likelihood to estimate them and 'plug-in'
- Could use a Bayesian approach but timeconsuming

- The covariance function should reflect c(x, x) =1 and that c(x, x') decreases as |x - x'|increases
- Includes further hyperparameters δ that specify the speed of covariance decrease with increasing |x x'|

$$cov\{f(\mathbf{x}), f(\mathbf{x}') | \sigma\} = \sigma^2 c(\mathbf{x}, \mathbf{x}')$$

- The uncertainty at simulator runs is 0

 unless a nugget is used
- The uncertainty between points decreases as it gets closer to simulator suns
- The width of bounds between points increases as δ decreases

- A Gaussian process, with parameters estimated by the training data
- Any point can be estimated
- Uncertainty in the estimate can also be estimated

- The emulator is non-unique
- Hyperparameters will be different if you re-run
 Unless you set the seed
- Using prior information can help stability
- Often, it's not actually a problem...

Building an emulator

The Leverhulme Trust

From Jill Johnson following O'Hagan (2006)

30

Aerosol model emulation with DiceKriging (Roustant et al., 2012 & Lee, at al, 2013)

Emulation done gridbox by gridbox for sensitivity analysis

d) Emulator mean CCN ($\mu_{\rm CCN}$)

Training data

- Need to update the prior with simulator points
- Require these points to provide good information about the function through uncertain space
- Often consider no prior information regarding particular parts of the space

Latin hypercube sampling

- Good for inactive dimensions
- Use optimum or maximin
- May want piecewise LHS

Latin hypercube sampling

Maximin Latin hypercube

The marginals

Maximin Latin hypercube

- When emulator validation suggests can update the design sequentially
- If no reason to search particular region, augment the design
- Can add points sequentially, perhaps Sobol, to particular regions

- These are not recommended
- The covariance function is better estimated using a variety of distances between points
- Uncertainty between training points will be very high

- Have to check the emulator can predict what the emulator would say
- Usually want to check 'out of sample'
- Can use leave one out when circumstances dictate

Aims of validation

Prediction value

Ensure emulator predictions are close to simulator Prediction uncertainty

Ensure uncertainty in emulator is small enough for further inference

GLOMAP simulation

- When out-of-sample tend to design two groups, as per Bastos & O'Hagan (2009)
- 1/3 close to simulated points and 2/3 spaced out
 Helps reveal particular difficulties

- Individual prediction errors
 - Treat like regression errors, approximately Gaussian and <|2| standardised
- Mahalanobis distance
 - single summary of individual prediction errors
 - extreme values indicate emulator/simulator mismatch
- Pivoted Cholesky errors
 - following variance decomposition
 - particular patterns aid interpretation of mismatch

Validation plots

UNIVERSITY OF LEEDS

'n

0

20

40

60

Pivoting order

The Leverhulme Trust

100

• 38

80

Aerosol emulator validation

- When out-of-sample is not possible
- Leave a point out, build emulator, produce validation statistics
- Repeat for all points and compare statistics
- Any points with extreme statistics indicate problems

Emulation for understanding

Oliver - Methane Lifetime

UNIVERSITY OF LEEDS

Emulation for uncertainty analysis

UNIVERSITY OF LEEDS

Emulation for sensitivity analysis (Saltelli et al., 2000) using R sensitivity (Pujol et al., 2008)

UNIVERSITY OF LEEDS

Aerosol model sensitivity analysis

UNIVERSITY OF LEEDS

100 8 30 70 Latitude 60 0 50 40 8 30 20 ŝ 10 0 -180-135135 180 -90 90

Longitude

SS_ACC JULY

AIT_WIDTH JULY

BB_DIAM JULY

Longitude

DRYDEP_AER_ACC JULY

Aerosol model sensitivity analysis II

UNIVERSITY OF LEEDS

DRYDEP_AER_AIT

DMS_FLUX

ANTH SOA

SO2O3_CLEAN

SS_ACC

NUC_SCAV_DIAM

BOREAL_FIRE (136.06,59.97)

100

JAN VAR APR VAY JUN JUN JUN SEP SEP VOV VOV

JAN FEB MAR APR JUN JUN JUL AUG SEP SEP VOV DEC

0

100

80

60

40

20

0

%

ANTARCTIC (354.33,-71.13)

100

80

BL_NUC

BIOMASS_BURNING_1 (314.65,-12.55)

0

Multiple model sensitivity analysis I

Multiple model sensitivity analysis II

Emulators for model constraint I

The Leverhulme Trust

UNIVERSITY OF LEEDS

Emulators for model constraint II

The Leverhulme Trust

- Stochastic simulator add an estimated nugget to covariance
- Multivariate emulator must characterise the covariance between multiple outputs
- Discontinuities could build multiple emulators, perhaps multivariate

- Extrapolate too far with confidence
- Estimate a simulator output it's not trained to
- Replace the simulator

- When the simulator is very cheap to run
- When it won't validate
- When you haven't got a good set of simulator runs for training
- When you aren't sure what you'll use it for

Methodology references

- Rasmussen, Carl Edward, and Christopher KI Williams., 2006. Gaussian processes for machine learning. Vol. 1. Cambridge: MIT press.
- O'Hagan, A., 2006. Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering & System Safety, 91(10), pp.1290-1300.
- Roustant, O., Ginsbourger, D. and Deville, Y., 2012. DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization.
- McKay, M.D., Beckman, R.J. and Conover, W.J., 1979. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), pp.239-245.
- Bastos, L.S. and O'Hagan, A., 2009. Diagnostics for Gaussian process emulators. Technometrics, 51(4), pp.425-438.
- Saltelli, A., Chan, K. and Scott, E.M. eds., 2000. Sensitivity analysis (Vol. 1). New York: Wiley.
- Pujol, G., looss, B. and looss, M.B., 2008. Package 'sensitivity'.

Lee LA; Reddington CL; Carslaw KS (2016) On the relationship between aerosol model uncertainty and radiative forcing uncertainty, *Proceedings of the National Academy of Sciences of the United States of America*, **113**, pp.5820-5827. doi: 10.1073/pnas.1507050113

Carslaw KS; **Lee LA**; Reddington CL; Pringle KJ; Rap A; Forster PM; Mann GW; Spracklen DV; Woodhouse MT; Regayre LA; Pierce JR (2013) <u>Large contribution of natural aerosols to uncertainty in indirect forcing</u>, *Nature*, **503**, pp.67-71.

Lee LA; Pringle KJ; Reddington CL; Mann GW; Stier P; Spracklen DV; Pierce JR; Carslaw KS (2013) The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei, *Atmospheric Chemistry and Physics*, **13**, pp.8879-8914. doi: 10.5194/acp-13-8879-2013

Lee LA; Carslaw KS; Pringle KJ; Mann GW (2012) Mapping the uncertainty in global CCN using emulation, *Atmospheric Chemistry and Physics*, **12**, pp.9739-9751. <u>doi: 10.5194/acp-12-9739-2012</u>

Lee LA; Carslaw KS; Pringle KJ; Mann GW; Spracklen DV (2011) Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters, *ATMOSPHERIC CHEMISTRY AND PHYSICS*, **11**, pp.12253-12273. doi: 10.5194/acp-11-12253-2011

