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What is a simulator?

A simulator is a computer code used to 
represent some real world process
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Why simulate?

Which aerosol 
are most 

effective at 
cooling the 

climate?

Could aerosol be 
used to cool the 

climate for 
geoengineering?

Understand Predict
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• 𝒚 = 𝑓(𝒙) represents the simulation process

• 𝒚 is the simulator output

• 𝒙 is the simulator input

• 𝑓 is the simulator 

Notation
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𝒀 = 𝑓 𝑿

Uncertainty in simulation

Computer codes are 
imperfect representations of 

the real world.

How do these imperfections affect our 
understanding and predictions?

What is the effect on 𝒀?
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Uncertainty in climate simulators
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• 𝑿 are ‘model inputs/parameters’

• They may be spatial fields/time series 

• They may be single values used globally or 

regionally

What is 𝐗?
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Where 𝑿 is a spatial field or series…

We will represent the 
uncertainty in 𝑿 by a single 

value to perturb the whole field, 
or series (maybe regionally, but 

mostly globally) 
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Uncertainty in aerosol simulator inputs

Diagram courtesy of PNNL
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• 𝑿 is uncertain  𝒀 is uncertain

• 𝒙 can be given uncertainty distribution 𝑮

• Marginally 𝑥𝑘 has distribution 𝐺𝑘

Uncertainty in simulator inputs

Obtain 𝒚𝒊 = 𝑓(𝒙𝒊) for given 𝒙𝒊

from 𝑮
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• Simulators contain lots of equations (hundreds 

of lines of code)

• Simulator resolution increases with computer 

power 

Simulator complexity

Credit: 
NOAA
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Bottom line…

𝑓 is often too complex to simulate 
many 𝒙𝑖 from 𝑮 to characterise the 

effect of uncertainty on 𝒚
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• Replace 𝑓 with  𝑓

•  𝑓 is the emulator

•  𝑓 is much quicker to run but accurately 

represents 𝑓

Emulation
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• Replace 𝒚𝒌 = 𝑓(𝒙) with 𝒚𝒌 =  𝑓(𝒙)

More accurately…

Define an output (or selection 
of) to be emulated 

- doesn’t replace the whole 
simulator for all research
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• From the simulator 𝒚 can be any/all model 
output/diagnostics

• For emulation 𝐲 must be more restricted

• 𝑦 is often a scalar representing a single model output, at 
a particular time and location
– Eg.

• global mean temperature for 2000

• total number for particulate matter aerosol > 2.5um in a model grid box

• 𝒚 could be a spatial field, or a time series, or EOF/PCAs, 
or a selection of model outputs

What is 𝐲?
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Emulator complexity

The complexity of the emulator is 
dependent on the complexity of the 

model output to be emulated 
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• We will carry on assuming y is scalar and 𝒙 is a 

collection of scalar values 

• 𝒙 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑝 for 𝑝 uncertain parameters

• Use a selection of 𝒙𝑖 , 𝒚𝑖 from 𝑓 to ‘build’  𝑓

Continuing…..
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When is an emulator useful?

uncertainty 
analysis

Quantify the 
impact of 

uncertainty on 
model output

sensitivity analysis

Understand model 
response to 

uncertain inputs 

And the model is too complex to do the 
sampling required
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A statistical emulator

An emulator that gives estimates of 
its own uncertainty

We tend to use the Gaussian 
process 
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• Each point in space has a Gaussian distribution

• Each collection of points has a multivariate 

Gaussian distribution

• The whole collection is a Gaussian process

• In its basic form requires ‘smooth output’ 

The Gaussian process emulator, 
(Rasmussen and Williams, 2006 & O’Hagan 2006).

Does not require the output to be 
Gaussian
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Set up the Gaussian process prior function

ℎ 𝒙 𝑇β is the mean function

𝑐 𝒙, 𝒙′ is the covariance function

β, are hyperparameters

The GP prior

𝑓 𝒙 |β, ~ 𝐺𝑃(ℎ 𝒙 𝑇β,2𝑐(𝒙, 𝒙′)) 
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• Use the mean function to specify any functional 

form known to exist

• In the absence of prior information we tend to 

specify it as constant or a linear regression 

formula

Specifying the GP mean

ℎ 𝑥 = 1

ℎ 𝑥 = β0 + β1𝑥1+ β2𝑥2 + … + β𝑝𝑥𝑝
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• When there are very few simulator runs to give 

information the function is weighted towards the 

prior mean

• Outside the bounds of the simulator runs the 

emulator tends towards the prior mean

• With more (well-chosen) simulator runs the 

hyperparameters β are better estimated

What does the prior mean function do?
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• Can be plugged in if a particular regression 

model is required

• Usually use maximum likelihood to estimate 

them and ‘plug-in’ 

• Could use a Bayesian approach but time-

consuming

β hyperparameters
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• The covariance function should reflect 𝑐 𝒙, 𝒙 =
𝟏 and that 𝑐 𝒙, 𝒙′ decreases as 𝒙 − 𝒙′

increases

• Includes further hyperparameters δ that specify 

the speed of covariance decrease with 

increasing 𝒙 − 𝒙′

Specifying the GP covariance

𝑐𝑜𝑣 𝑓 𝒙 , 𝑓(𝒙′ 𝜎 = 𝜎2 𝑐(𝒙, 𝒙′)
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Typical choices for 𝑐(𝒙, 𝒙′)

Gaussian:

𝑐 𝒙, 𝒙′ |δ = exp{−
𝒙 − 𝒙′ 2

2𝛿2
}

Matern 5/2:
𝑐 𝒙, 𝒙′ |δ =

𝟏 +
𝟓|𝒙−𝒙′|

𝜹
+

𝟓(𝒙−𝒙′)𝟐

𝟑𝜹𝟐 𝒆𝒙𝒑(−
𝟓|𝒙−𝒙′|

𝜹
) 
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• The uncertainty at simulator runs is 0

– unless a nugget is used

• The uncertainty between points decreases as it 

gets closer to simulator suns 

• The width of bounds between points increases 

as δ decreases

Effect of covariance 
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• A Gaussian process, with parameters estimated 

by the training data

• Any point can be estimated

• Uncertainty in the estimate can also be 

estimated

The posterior distribution
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• The emulator is non-unique

• Hyperparameters will be different if you re-run 

– Unless you set the seed

• Using prior information can help stability

• Often, it’s not actually a problem…

Emulator uniqueness
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Building an emulator

From Jill Johnson following O’Hagan (2006) 
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Aerosol model emulation with 

DiceKriging (Roustant et al., 2012 & Lee,at al, 2013)

Emulation done 
gridbox by 
gridbox for 
sensitivity 
analysis
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• Need to update the prior with simulator points

• Require these points to provide good information 

about the function through uncertain space

• Often consider no prior information regarding 

particular parts of the space

Training data
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• Good for inactive dimensions

• Use optimum or maximin

• May want piecewise LHS

Design for training data 
(McKay et al., 1979)

Latin hypercube sampling
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Latin hypercube sampling
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The marginals
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• When emulator validation suggests can update 

the design sequentially

• If no reason to search particular region, augment 

the design

• Can add points sequentially, perhaps Sobol, to 

particular regions

Sequential design
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• These are not recommended

• The covariance function is better estimated 

using a variety of distances between points

• Uncertainty between training points will be very 

high

Factorial designs
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• Have to check the emulator can predict what the 

emulator would say

• Usually want to check ‘out of sample’

• Can use leave one out when circumstances 

dictate

Validation of emulators
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• Ensure e

Aims of validation

Prediction 
value

Ensure emulator 
predictions are 

close to 
simulator

Prediction 
uncertainty

Ensure 
uncertainty in 

emulator is small 
enough for 

further inference
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• When out-of-sample tend to design two groups, 

as per Bastos & O’Hagan (2009)

• 1/3 close to simulated points and 2/3 spaced out 

– Helps reveal particular difficulties

Validation design
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• Individual prediction errors 
– Treat like regression errors, approximately Gaussian and 

<|2| standardised

• Mahalanobis distance 
– single summary of individual prediction errors

– extreme values indicate emulator/simulator mismatch

• Pivoted Cholesky errors 
– following variance decomposition

– particular patterns aid interpretation of mismatch

Validation statistics
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Validation plots 
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Aerosol emulator validation
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• When out-of-sample is not possible 

• Leave a point out, build emulator, produce 
validation statistics

• Repeat for all points and compare statistics

• Any points with extreme statistics indicate 
problems

Leave one out
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Emulation for understanding
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Emulation for uncertainty analysis
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Emulation for sensitivity analysis (Saltelli

et al., 2000) using R sensitivity (Pujol et al., 2008)
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Aerosol model sensitivity analysis
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Aerosol model sensitivity analysis II
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Multiple model sensitivity analysis I
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Multiple model sensitivity analysis II
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Emulators for model constraint I
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Emulators for model constraint II
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• Stochastic simulator – add an estimated nugget 

to covariance 

• Multivariate emulator – must characterise the 

covariance between multiple outputs

• Discontinuities – could build multiple emulators, 

perhaps multivariate

Extension to GP emulators
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• Extrapolate too far with confidence

• Estimate a simulator output it’s not trained to

• Replace the simulator

What an emulator can’t do
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• When the simulator is very cheap to run

• When it won’t validate

• When you haven’t got a good set of simulator 

runs for training

• When you aren’t sure what you’ll use it for

When not to use an emulator
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