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What is data assimilation?

e We have information from the system via physical
(chemical,...) knowledge encoded in our numerical model
and perhaps other constraints, the prior,

e We have information from the system via observations,
the likelihood,

e Data assimilation is the mathematics of combining the
two, in the posterior.



Why data assimilation?

Forecasts
Process studies via ‘reanalyses’
Model improvements
- model parameters
- parameterizations
(4 o . o ?
Intelligent monitoring



The basics: probability density
functions
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Joint and marginal pdf

Any pdf of more than one variable is called a joint pdf.

If we are only interested in the pdf of one of these variables,
or of a subset of these variables we can form the marginal pdf
by integrating the joint pdf over all variables not of interest:
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Conditional pdf

We can also form a conditional pdf from a joint pdf by keeping
one, or a subset, of the variables constant: p(az‘y)

We see that this pdf is

equal to p(CE, y) along
the line y=y. However, p(ZE, y)

it is not normalised to 1,
unless we define

p(z,y)

p(y)
Indeed, p(y) is the integral
of p(x,y) along the line y=y. p(a: | y)
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Bayes Theorem
Conditional pdf: p(il?, y) = p(:l:\y)p(y)

Similarly: p(f, y) — p(y|aj)p($)

p(ylx)p(r)

Combine: p(x\y) —



Bayes Theorem

We can use:

p(y) = [ ple.y) dv = [ plyle)p(e) do

Bayes Theorem

 pyle)p(x)
P = Ty )p(e) da




Data assimilation: general formulation

Bayes theorem:

/\ o(aly) = L)
] / | plylz)p(x) da
velocity - The solution is a pdf!

Posterior No inversion!



How to use Bayes Theorem

The natural thinking about Bayes Theorem is as follows:

 pylr)p(x)
plrly) = [ p(yle)p(x) da

1. Start with the prior, which should contain all information you
have about the problem before looking at the observations.
2. Multiply the prior with the likelihood to find the posterior.
3. The posterior pdf is the solution to the data-assimilation problem.
4. ltis alearning framework.



Observation operator H




Filters and smoothers

Filter: solve 3D
problem sequentially

Smoother: solve 4D
problem in specific

X time window all at
once

Time

Both can be treated by Bayes Theorem by either defining x as a
model state state or as a model trajectory.



Variational methods

A variational method looks for the most probable state, which is
the maximum of this posterior pdf also called the mode.

p(x|y) J(x) = -log p(x|y)




The Gaussian assumption

1 (T —T)*
p(T) — \@U EXp 20.2

Prior pdf: multivariate Gaussian:

p(x) o< exp [—%(x — )" B (2 — )

Likelihood: multivariate Gaussian
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Variational methods

Instead of looking for the maximum one solves for the minimum
of a so-called costfunction.

The pdf can be rewritten as p(gj]y) X exp [—%J]

in which

J=(v—m) B (v —a) + (y — H(x)) R (y — H(x))

The minimum is found as that state vector for which the derivative is
zero. 4DVar needs model adjoint.




Kalman Filter from Bayes Theorem

For the KF we complete the squares to find (only for linear H !!1):
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P,=(1-KH)P,

Lg = Lp

These are the standard Kalman filter equations.



The error covariance:

Tells us how model variables
co-vary.

Latituce
T

Spatial correlation of SSH
and SST in the Indian Ocean

In the Kalman filter this comes
in via the P, H' term:

Ty = Tp HPbHT +R) Yy — Hzxyp)

: Longhtude
Haugen and Evensen, 2002




Ensemble Kalman Filters

Represent the mean and covariance by an ensemble of model states.




Sampling

Two effects of finite sample size:
- Underestimation of sample covariance.
- Spurious long-range correlations.
Fixes:
- Covariance inflation

- Covariance localization



Localisation observation space

Multiply observation error *

«—— Observdtions

covariance R by a factor that
)\ / ,5\

increases as the distance

between observation and

model grid point increases: O O
Model

R = p(d)R rid Poir‘(s‘
in which d denotes this \ \*_/

distance.

Image courtesy of Steven Greybush.



Advantages of localisation

Reduces spurious covariances due to small ensemble
Size

Decouples ensemble members in different areas -->
increase of effective ensemble size

Brings ‘new blood’ in the ensemble

Relatively smooth due to covariances



Nonlinear filtering: Particle filter

p(ylx)p(x)
J p(y|z)p(x) do

p(xly) =

N
1
l Use ensemble p(x) _ Z N&(x — x@)
1=1

p(x|y) sz T — ;)

with ) — p(ylzi) the weights.
> p(ylz;)




What are these weights?

e The weight w; is the normalised value of the pdf of the
observations given model state ;.

e For Gaussian distributed variables is is given by:

w; o< p(ylzi)
X  exp [—% (y— H(z;)) R (y— H(xz))}

e This can be calculated directly
e That’s alll



No explicit need for state covariances

e 3DVar and 4DVar need a good error covariance of the prior
state estimate: complicated

e The performance of Ensemble Kalman filters relies on the

quality of the sample covariance, forcing artificial inflation
and localisation.

e Particle filter doesn’ t have this problem, but...



A closer look at the weights

Assume particle 1 is at 0.1 standard deviations s of M independent
observations.

Assume particle 2 is at 0.2 s of the M observations.

The weight of particle 1 will be

Wy X exp [—% (y— H(x;)) R (y — H(z;))

= exp(—0.005M)

and particle 2 gives

Wy X €XP {—% (y — H(x)) R (y — H(x;))| = exp(—0.02M)




The problem in particle filtering...

The ratio of the weights is

2 exp(—0.015M)
wq

Take M=1000 to find

2 _ exp(—15) ~ 310"
wq

Conclusion: the number of independent observations is
responsible for the degeneracy in particle filters.



How to make particle filters useful?

1. Introduce ad-hoc localisation to reduce the number of
observations in each local area.

2. Use proposal density freedom

3. Several ad-hoc combinations of Particle Filters and Ensemble
Kalman Filters. For instance filters that make sure first 2
moments are correct.



1. Localisation in particle filters

Easy to make weights spatially varying, similar to observation-space
localisation in ETKF.

Main issue is at the resampling step: how to combine particles from
different areas in the domain.

So need smooth updates without resampling.

Ensemble Transform Particle Filter (ETPF, Reich, 2014)

Poterjoy (2014) Complicated scheme that mixes prior and posterior
samples and sets minimum weight(!)

Penny & Myoshi (2016) Too simple.



2. Use proposal density freedom

When the ensemble members have reached the observations
we are too late: the weights will vary too much.
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We need to guide them towards the observations and ensure
their weights are equal.



The solution: proposal densities
Use a different model and correct in the weights:
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EMPIRE data-assimilation framework

r='
Model 1 DA code 1 >
Model 2 DA code 2
Gl
DA code 3

Model 3
Q/
Model 4
e —

: Model 5
: Model 6

Model N

G J -

Fast coupling of any model to data assimilation codes via MPI,
e.g. HadCM3 (2 million), Unified Model (300 million), etc.

Much easier than coupling the model to e.g DART.
See also PDAF.



...and particle filters can be used
on e.g. climate models

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Correlation atmospheric zonal flow and oceanic meridional flow
in HadCM3



What do ensemble members mean?

* They represent the posterior pdf.
* So looking for the best member doesn’t make sense

* A good ensemble is one in which each ensemble member could
be replaced with nature,

* So nature and the members are drawn from the same pdf.

* This can be tested, e.g. via rank histograms



Application of DA to paleo climate

e Proper uncertainty estimate is essential!
e Determine error covariance of model state (or evolution)
e Determine error covariance of observations.

e Use Bayes Theorem to get posterior pdf (or best estimate
plus error estimate)

e Use Bayesian framework to add new observations, it is a
learning framework



How to find error covariance of
model state?

Variances from knowledge of model behaviour, comparison
with observations (past and present)

Correlations via knowledge of the system (e.g. physical
relation between variables such as geostrophic balance)

Or generate first estimate from ensemble of snap shots
from long model run. This gives the total variance in the
climate model, actual error covariance can be taken as
fraction of this.

Or generate ensemble of forecasts with different lead
times, e.g. 1 year and 2 years.



How to find error covariance of
observations?

e |nstrument errors
e Representation errors



What are representation errors?

Extra uncertainty that arises in data assimilation because model
and observations have different representation of reality:

- Different resolution (weather forecasting)

- |Isotope ratio versus model temperature

- Etc..




How do they arise in DA?

Start from Bayes Theorem:

py|z)p(z)
p(y)

p(xly) =

Representation differences between model and observations, so
representation errors arise in the likelihood, not in the prior!



Likelihood with unknown H

The observation equation reads y = H (x) + €
but H is not known exactly.
Use

plyle) = / ply. H|z) dH

SO

p(y|z) = /p(y!H, r)p(H|z) dH

p(y|H, ) isthe normal likelihood with fixed H

p(H‘gj) is the pdf that describes the uncertainty in H

p(y|w) is the convolution of the two.



Gaussian example

Assume H is givenby: H(x) = ﬁ(ai) +n

~

SO y=H(x)+e=H(x)+n+e

Gaussian instrument errors:

~

p(y|H,z) o< exp[—1/2(y — H(z) —n)" R~ (y — H(z) — n)]

Gaussian observation operator errors:
p(H|zx) o< exp[—1/2 7" C~ ']

use in
p(yle) = / p(y| H, 2)p(H|z) dH
to find

p(y|H, ) o exp[~1/2(y — H(x))" (R+C) " (y — H(x))]



Likelihood when physics is missing

Introduce P (Q?, 5)T

and use

plyle) = / p(yle, H)p(3la)ds = / p(y]2)p(3|c)d3

p(y | Z) is the instrument error

p(z ;13) is the representation error

p(y 33) is the convolution of the two




Is observation sparseness or
pooOr accuracy a problem?

In principle: NO!
Estimate errors as good as possible
Explain very clearly how you did that

Accept that if prior errors are large and observation errors
are large then also the posterior errors will be large

Use Bayian framework so that new observations can
always be added; no need for using old observations

again.
In practise: ok, not that nice...



Conclusions

Data assimilation is based on a solid mathematical framework:
Bayes Theorem.

Need to provide error covariances of observations

Need to provide error covariances of the prior, used at every time
window in variational methods

For ensemble Kalman Filters prior is only needed at start of
reanalysis, but inflation and localisation are essential at each
observation time

Variational-EnKF hybrids are popular (no adjoint needed)
Particle filters don’t need state covariance matrices explicitly

Efficient particle filters need localisation and inflation, or model
error covariance Q

Methods should work for paleo climatology too...



